# A 2D Vortex Panel Method approach for modelling unsteady airfoil dynamics

KING'S College

LONDON

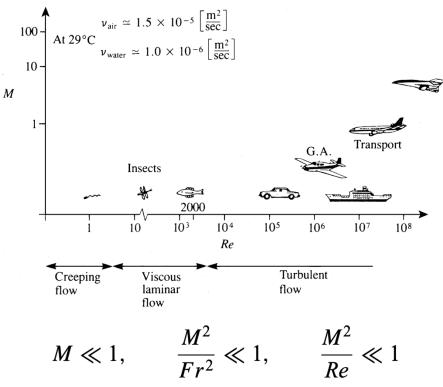
ID BUILT

19

Vedang Joshi Department of Engineering King's College London

#### Introduction

• Emergence of fish schools by studying the role of vortex shedding behind fish, using techniques from unsteady fluid dynamics.





 Fish schools provide hydrodynamic benefits to individuals through flowmediated interactions<sup>1</sup>.

Fish schools achieve improved propulsive performance by harvesting energy from vortex wakes<sup>2</sup> enhancing thrust production<sup>3</sup> or by reducing drag<sup>4</sup>.

Weihs, D. (1973)
Liao et. al (2003)
Boschitsch et. al (2014)
Maertens et. al (2017)
JSTOR
Katz, J. and Plotkin, A. (2001)

## Rapid intro to Inviscid, Incompressible Flow

The vorticity is twice the angular velocity

 $\boldsymbol{\zeta} \equiv 2\boldsymbol{\omega} = \nabla \times \mathbf{q}$ 

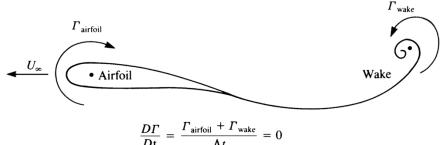
We have an open surface S, and closed curve C

n /

 $\xi = 2\omega$ 

$$\int_{S} \nabla \times \mathbf{q} \cdot \mathbf{n} \, dS = \int_{S} \boldsymbol{\zeta} \cdot \mathbf{n} \, dS = \oint_{C} \mathbf{q} \cdot d\mathbf{l}$$

Kelvin's theorem: Rate of change of circulation around closed curve with the same fluid elements is zero



Biot-Savart Law: Determine the velocity field as a result of a known vorticity distribution  $\mathbf{q} = \nabla \times \mathbf{B}$  $\boldsymbol{\zeta} = \nabla \times \mathbf{q} = \nabla \times (\nabla \times \mathbf{B}) = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B}$ 

$$\mathbf{B} = \frac{1}{4\pi} \int_{V} \frac{\boldsymbol{\zeta}}{|\mathbf{r}_{0} - \mathbf{r}_{1}|} \, dV \, \mathbf{q} = \frac{1}{4\pi} \int_{V} \nabla \times \frac{\boldsymbol{\zeta}}{|\mathbf{r}_{0} - \mathbf{r}_{1}|} \, dV$$

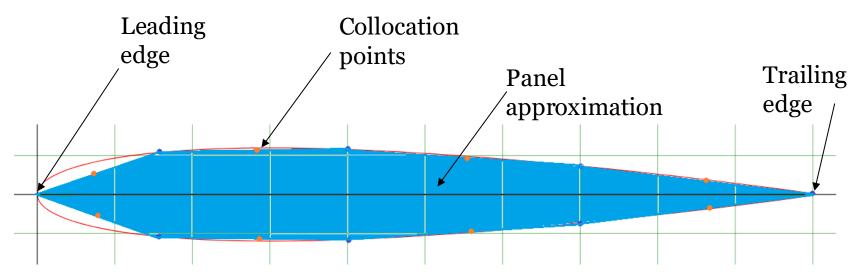
Take a small cross sectional area dS, normal to the vorticity, with direction dl on the filament:

$$\nabla \times \frac{\boldsymbol{\zeta}}{|\mathbf{r}_0 - \mathbf{r}_1|} \, dV = \nabla \times \Gamma \frac{d\mathbf{l}}{|\mathbf{r}_0 - \mathbf{r}_1|} = \Gamma \frac{d\mathbf{l} \times (\mathbf{r}_0 - \mathbf{r}_1)}{|\mathbf{r}_0 - \mathbf{r}_1|^3}$$
$$\mathbf{q} = \frac{\Gamma}{4\pi} \int \frac{d\mathbf{l} \times (\mathbf{r}_0 - \mathbf{r}_1)}{|\mathbf{r}_0 - \mathbf{r}_1|^3}$$
[1] Katz, J. and Plotkin, A. (2001)

## Panel Methods

- Technique for solving incompressible potential flow over 2D and 3D geometries
- In 2D, the airfoil surface is divided into piecewise straight-line segments/panels/boundary elements point vortex singularities of strength γ, are placed on each panel
- Greater number of panels, the more accurate the solution.
- We apply the boundary condition at the control point, treating the airfoil surface as a streamline. Velocity would be tangential to the surface, and no fluid can penetrate the surface

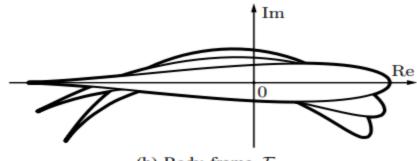
The net effect of viscosity on a wing is captured by the Kutta condition, which requires that the flow leaves the sharp trailing edge smoothly, with no infinite velocities or flow separation.



[1] Katz, J. and Plotkin, A. (2001)

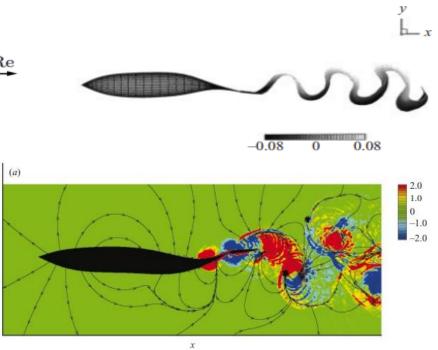
### **Related Work**

- Allows for computation of arbitrary profile deformation that cannot easily be defined by conformal transformations<sup>1</sup>.
- Studied for individuals by developing a fish-like profile, imposing a deformation parameter such that the profile bends while maintaining camber length and area<sup>1</sup>.



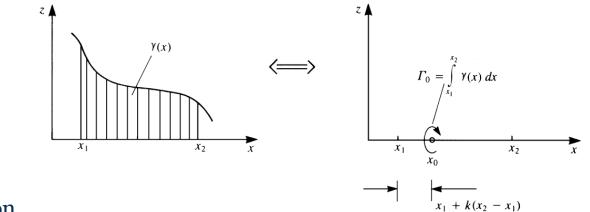
(b) Body frame  $\mathcal{F}_B$ 

 Panel methods are implemented for numerical simulations on the giant Danio, with the caudal fin having chordwise sections of NACA 0016 shape<sup>2</sup>.

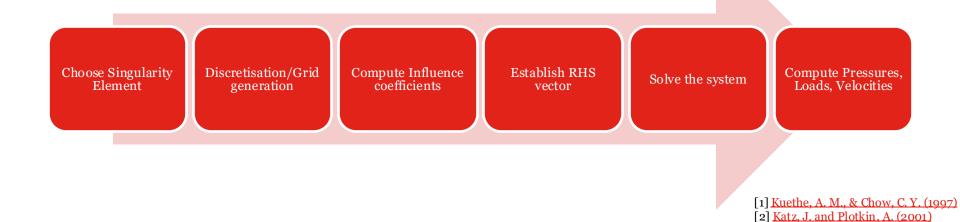


#### Vortex Panel Method

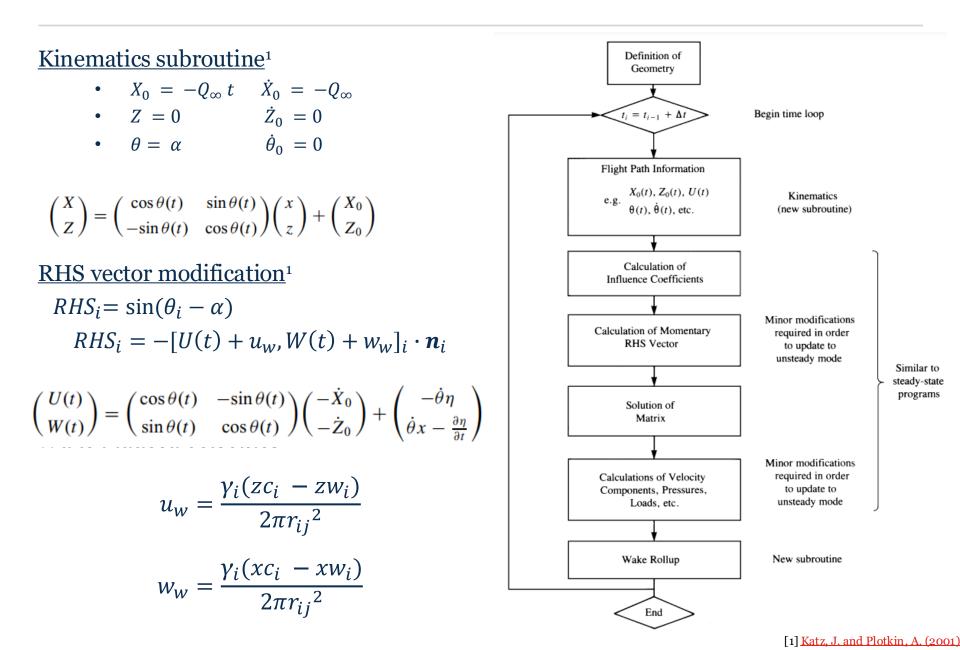
- Point singularity solutions
- Able to discretise γ (x) into finite segments
- Influence coefficient calculations calculated using Kuethe and Chow<sup>1</sup>
- The following slides follow Katz and Plotkin's formulation



• Steady and Unsteady vortex panel methods created for the NACA0012 airfoil undergoing sudden forward motion (may be extended to pitching and heaving motions as well)



#### Modifications for the unsteady state: Sudden Forward Motion



### Modifications for the unsteady state (cont.)

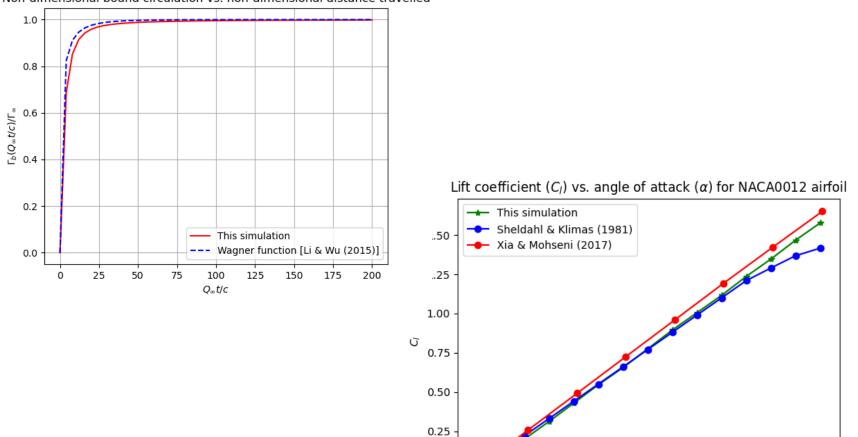
#### Wake rollup subroutine<sup>1</sup>

- Ensure that the airfoil's circulation varies with time (implement Kelvin's condition) for unsteady airfoil's wake shedding.
- The local velocity calculated by the velocity components induced by the wake and airfoil. Measured in the inertial frame of reference *X*, *Z*.
- At each time step, the induced velocity  $(u, w)_i$  at each vortex wake point is calculated, then the vortex elements are moved by

 $(x,z)_i = (u,w)_i \Delta t$ 

• Velocity induced at each wake vortex point is a combination of the airfoil and wake vortices.

#### Sudden Forward motion



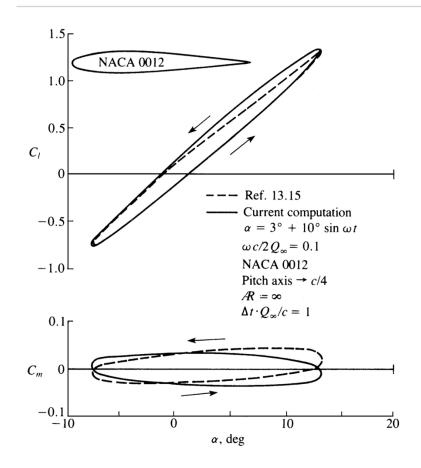
0.00

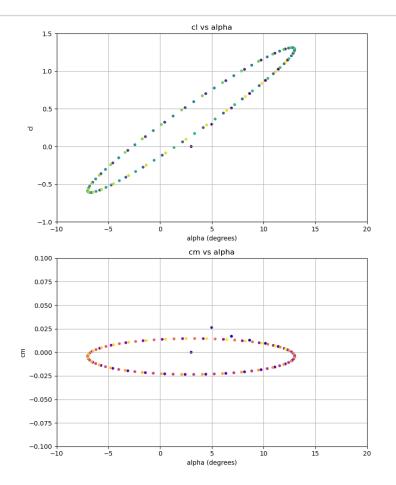
Non-dimensional bound circulation vs. non-dimensional distance travelled

Li and Wu (2015)
Xia and Mohseni (2017)
Sheldahl and Klimas (1981)

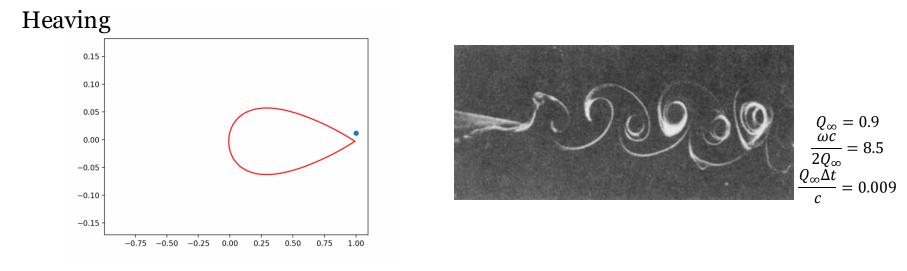
 $\alpha$  (in deg.)

### Pitching motion

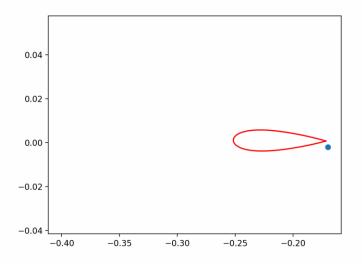


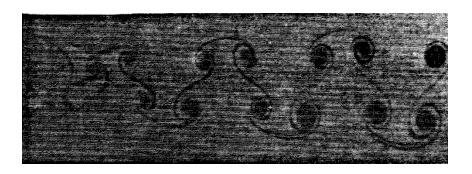


#### Animations



#### Pitching





[1] Katz, J. and Plotkin, A. (2001)[2] Koochesfahani (1989)

### Future Work

- Attempt to introduce a deformation parameter to realistically model the motion of fish
- Integrating viscous forces and LEV in future simulation framework(s)
- Looking at more complex geometries
- Observe the motion of the fish with the deforming tail in the context of multiple individuals, progressing to looking in the context of a swarm
- Extend model to 3D