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1 Introduction and Background

Assistive technology is any kind of device or system that enables a person to perform a function
they struggle with when alone due to disability, restricted mobility or other impairments. Of the
people in need of assistive technology, only 1 in 10 receive it [I]. Thus there is a clear motive for
development in this sector of healthcare. Assistive technology, while typically used by the elderly, is
also widely used by any individuals with difficulties performing tasks such as students with learning
difficulties [2]. There are many areas in which assistive technology can improve quality of life for
an individual including reading disabilities [3], partial vision loss [4], navigation difficulties [5], and
mobility impairments [6].

Although not as fast-growing as that of Japan and Italy, the UK has an ageing population. It
is projected that there will be an additional 7.5 million people aged 65 and over in 50 years [7]. A
higher proportion of elderly people gives rise to a greater number of age-related disabilities and thus
an increased demand for support. Introducing more assistive technology into domestic environments
would allow the elderly to be able to live independently for longer. This would be beneficial to the
individual and also from a socioeconomic standpoint in that it would reduce pressure on residential
homes.

Lack of mobility in particular, be it age-related or not, can have a huge negative impact on a
person’s quality of life as it can cause further problems with both physical and mental health [§].
Some individuals with mobility issues are unable to work due to their disability and become locked
into poverty, while others suffer from loneliness due to their inability to attend social activities.

Before assistive technology can be made more readily available, it must be further developed.
The Bristol Robotics Laboratory at the University of the West of England is currently working on
assuring safety in assistive robots. They have built a prototype of a robot that would assist people
with a disability that prevents them from being able to manoeuvre between a seated and standing
position unsupervised. Assisting a person with this specific movement is particularly important
to focus on, since it is frequently required in day-to-day life. The robot is suspended from the
ceiling and can move in a 2D plane. It consists of two arms with handles for the user to grip which
supports the weight of the user during the sit-to-stand transfer. As the user stands the robot moves
with them, providing mechanical assistance and reducing the workload on their body. Currently,
the robot requires a large system of approximately 50 sensors, including a suit of sensors (Xsens)
which the user must wear.

The system of sensors on the participant and the robot generates large quantities of sensor data.
This sensor data is comprised of features such as orientation and position. This data is large in
scope and difficult to analyse without reducing the dimensionality of the dataset. Some features
carry more important information regarding the sit-to-stand transfer than others.

The aim of this work is to identify the features that best represent the entire dataset so that
we can reduce the dimensionality whilst retaining the necessary information. Statistical methods
are used to group features with similar information content into categories and machine learning
(ML) methods are used to score the relative importance of features. We employ two different ML
methods: an Extremely Random decision tree model (Embedded ML method) and a Sequential
Forward Selection model (Wrapper ML method). We obtain importance scores for all the features
for all the trials for data from two participants, and use these importance scores to determine which
features to select, for the individual participants.



2 Data Inspection

The dataset contains time series data for 40 trials split equally over two participants (‘WAN’ and
‘PRA’), with each trial consisting of 192 features. In a single trial, participants are recorded as they
perform the sit-to-stand transfer leaning on the arms of the robot for support. Throughout the
run, the sensors collect data at a frequency of 100Hz; some sensors have many individual features
whilst others have just one.

There are 5 different sensor types: balance board, force cell, lidar, linear encoder and Xsens.
The balance board has 4 pressure sensors, one on each corner. The force cells are placed on the
handles of the machine and the data represents the user pulling and pushing on the grips. lidar
sensors measure the distance from the robot to the user. Linear encoders measure the distance
moved by the robot. The Xsens suit contains 23 sensors attached to different points on the human
body, each of which records their position and orientation in 3D space. This maps out the position
of the user as they use the machine and undergo the sit-to-stand transfer. The three figures in
Appendix [C] taken from an animation of the Xsens data throughout a full trial, clearly display the
participant in three distinct stages. We can see this from the change in the angles at vertices 16
and 20 (the knees of the participant).

Given the variety of units within the data, we decided to normalise the values to a common
scale to enable us to make more direct comparisons. Due to our aim requiring us to compare the
different features we concluded the relative values were more important than the magnitudes so
this step was justified.

To get an initial understanding of the data, we focused on separating the transfer into distin-
guishable stages. This allowed us to splice the data into smaller sets across a shorter time frame to
isolate the time period when the robot was in motion. These stages are applied to the other sets of
sensor data, giving insight into how their dynamics change depending on the motion of the robot.

The linear encoder data represents the location of the robot over time, with (x,y) pairs of
coordinates showing its location in the robot’s plane of motion. Hence, the velocity of the robot can
be determined by the gradient with respect to time of the z and y linear encoder data respectively.
It can be seen in Figure [la] that there are three distinct stages in each transfer, with a significant
difference in velocity between each stage.

The changes in velocity, which can be seen in Figure [lal as variations in the gradient, are used
to determine the stages present in the transfer. The data is first passed through a Savitzky—Golay
filter [9]. This smooths the data, increasing the precision without distorting the signal, allowing
the analysis to more accurately identify the changes in velocity which define the stages. The
acceleration of the robot is calculated, then the locations of significant changes are found, which
allows for changes in velocity and hence the stages to be determined. These stages are plotted in
different colours in Figure |1} colour coded to the stages shown in Figure

By plotting the linear encoder = data against the y data as seen in Figure we were able to
observe how the robot moves in the plane during the transfer. Figure shows the movement of
the robot during the three stages previously identified. Initially the robot is completely stationary,
then it moves upwards and away from the user, then finally it moves vertically upwards completing
the sit-to-stand transfer. For any given participant and trial, the linear encoder data can be
analysed to determine the time-frame of the three distinct stages. Only the second stage is useful
when considering the transfer as that is when the velocity is non-zero and the transfer is actually
occurring. Hence, the linear encoder data can be used to find the points at which to crop the
data for all of the sensors such that they only contain the second stage. By doing this, the sensor
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Figure 1: Plots visualising Linear encoder data for participant PRA, trial 1. The stages of the
transfer are colour coded to the stages shown in figure

features which are most meaningful in describing the sit-to-stand transfer can be found, allowing
the number of features to be reduced.

3 Feature Reduction

From the visualisations of the time series data, we can qualitatively identify that some lines vary
together and assume they carry similar information. This can be exploited to inform feature
selection, in that we can group features by how similar they are, under some similarity or distance
measure. This is conducted over trials per participant, comparing 190 features to each other
(excluding the 2 features from linear encoders). An appropriate threshold for the metric is selected
to divide between features that are similar enough to be interchangeable, and those that are not.
The specific measures we used are Pearson correlation coefficient [10], Spearman’s rank correlation
coefficient [11], and the distance extracted from dynamic time warping mappings.

3.1 Statistical Similarity

In order to reduce the number of features necessary to fully describe the transfer, we used two statis-
tical tests (Pearson correlation coefficient and Spearman’s rank correlation coefficient) to quantify
the statistical dependence of one feature on another. This dependence represents the correlation
between the two features. Every feature was tested against every other feature, generating a matrix
of scores which measures the dependence of each feature on every other feature.

The assumptions differ between the two statistical tests; Pearson assumes that the two features
have a linear correlation whilst Spearmans’s assumes a monotonic correlation, whether linear or
not [I2]. The data given by the features does not hold fully to either assumption, but shares
sufficient relationships such that the scores given by the tests can be used for meaningful comparison
between features.

Both statistical tests were implemented in Python using the SciPy ecosystem of packages [13].
Both tests produce a score in the range interval [—1, 1], with a score of 0 representing zero correlation
between the two features and a score of +1 representing a perfect correlation (the sign indicating
whether the correlation is positive or negative). As we were solely interested in the magnitude
of correlation between features, our scores were modified as follows: = 1 — ||, where (3 is the



modified score and « is the raw score. Hence, the modified scores fall in the interval [0, 1], where a
score of 0 represents a perfect correlation and a score of 1 represents zero correlation between the
two features. Hence, our modified score can be considered the ‘distance’ between two features.

With both statistical metrics, we can attain a matrix of distances between any two features.
Only the values below the leading diagonal need to be calculated, due to the distances being reflexive
and the values on the diagonal having zero distance - i.e. the distance of a feature to itself. Two
features can be identified as being similar enough to be interchangeable if the distance between
them falls under some threshold.

Consider all pairs of features which have a distance falling under some threshold, indicated
in the matrix. They can be grouped further by those that share a feature, thereby producing
partitions of the set of features where every feature only has distance less than the threshold with
features within the same set. This is conceptually analogous to a network representation. Each
feature can be thought of as a node, and edge weightings are the corresponding distances between
any two features. Given some threshold value, we delete the edges with weighting greater than the
threshold, creating a number of separated networks. The set of nodes (features) of each unconnected
network represents a set of features that can be grouped together, where one could be selected to
represent the whole group of features.

Therefore, the number and size of the groupings of features hinge on the selection of an ap-
propriate threshold value. A high threshold value allows for greater distances between features to
be designated as interchangeable, producing fewer, larger partitions, and vice versa. We can map
different threshold values against the number of partitions they create and then select an optimal
threshold value by using the the elbow/knee method as described in [14]. The elbow method finds
the elbow points (also known as the knee points) on a graph which are points of significant change.
It is used in contexts where there is a trade-off to pick an optimal value for some parameter. The
trade-off in this particular scenario is selecting a low enough threshold to capture a high amount of
distinctive behaviour (indicated by the number of groups of features), but high enough so a useful
amount of feature reduction takes place. A benefit to using this method is that it selects a value
that avoids under-fitting and over-fitting, in our case this means it avoids dividing the data into
too few and too many groups respectively. The implementation of the ‘kneed’ package in Python
was used.

3.2 Dynamic Time Warping (DTW)

A more tailored approach to time series data can be taken, which accounts for the time component.
Different approaches for measuring how the similarity, or conversely the ‘distance’, between two sets
of sequences exist, such as mean similarity and peak similarity [I5]. These are often combined with
different definitions of distances, such as Euclidean and other L,-norm measures. Dynamic time
warping (as described in [16]) is a particular approach to measure the similarity (and mapping)
of two temporal sequences of data, using a many-to-many mapping. A ‘distance’ measurement
can be extracted, which highlights how different two sequences are: robust to noise, shifts and
stretches. A key assumption of DTW is that one of the two time series which are being compared
is a combination of nonlinear transformations of the other.

To implement and automate the comparison between different features in the dataset, the
Python implementation ‘dtaidistance’ [I7] was used for speed and the alignment optimisation pur-
poses of the mappings, so that mappings are not made between large periods of time, rather more
locally. As with the statistical approach, the process is repeated to identify groups of similar fea-



tures for feature reduction as well as optimisation of the threshold value using the elbow/knee
point.

3.3 Comparison of Statistical Methods and DTW
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Figure 2: A normalised plot showing the knee point for DTW, Spearmans and Pearsons for par-
ticipant ‘PRA’ trial 1. DTW has knee point 1.242 which is normalised to 0.0424 with 47 groups.
Spearmans rank has a knee point of 0.021 with 103 groups and Pearsons has a knee point of 0.013
with 110 groups.

This comparison examines the feature reduction applied to the case of participant PRA, trial 1,
the results of which have been visualised in the appendix. The results for other participants and
trials are largely similar, with some negligible differences.

Taking the case of participant PRA, trial 1, the Pearson and Spearman statistical methods for
grouping features are nearly identical in their results as seen in Figure 2 The Spearman method
proved slightly more effective in reducing the features, grouping the 190 features into 103 groups
compared to the Pearson method’s 110 at the knee point threshold value. This result is to be
expected as Spearman’s assumption of a monotonic correlation [I8] between the features is more
accurate than Pearson’s assumption of a linear correlation [10]. However, the difference of only 7
groups between the two methods can be considered small enough to be negligible. In comparison,
DTW performed significantly better than either of the statistical methods, grouping the 190 features
into 47 groups at the knee point threshold value.

Considering the breakdown of group membership for all three methods in the case of partici-
pant PRA, trial 1, the largest group is comprised solely of Xsens features as seen in Appendix [H]
(Figures and . This largest group is significantly larger than all other groups for
all three methods, although this difference in size is more pronounced in the statistical methods
than in DTW. As with their results in grouping, the sensor breakdown of the groups is largely
identical for the two statistical methods, with some slight differences. Whilst the second largest



group for the statistical methods is similar to the first and is only made up of Xsens features, it
is significantly different for DTW. It is shown in Figure that the majority of its members are
lidar features. This is very different from the two statistical methods who split the lidar features
into many smaller groups as seen in Figures and

The distribution of distances across all features for participant PRA, trial 1 for the Spearman
method as seen in Figure [7] is approximately uniform, with the exception of a significant spike in
frequency for distances close to 0. Figure |8 shows that the distance distribution for the Pearson
method is very similar to the Spearman method with a spike close to 0, followed by a near uniform
distribution. However, they diverge for distance values £ 0.7 with Spearman remaining uniform
and Pearson experiencing an increase in frequency. The distance distribution for DTW shown in
Figure [J] shares the same spike for distance values close to 0, however, it has a positively skewed
unimodal distribution for the remainder of the distance values.

4 Grouped Features: ML Selection Methods

There are many studies in the literature which integrate feature selection methodologies to reduce
the complexities of problems and reduce noise in time series data. Maurer et al [19] used feature
selection techniques (a combination of decision trees, Naive-Bayes classifiers and nearest neighbour
classifiers) in a study identifying a user’s activity whilst wearing a multi-sensor platform worn
on different body positions, to classify 6 different body positions. They obtained a classification
accuracy of 87%. In a study modelling human activities using sensor data, Lester et al [20] extracted
the top 50 informative features from the raw data features. We used several statistical methods to
group the features together, we looked at using some wrapper and embedded approaches to select
features based on these feature groups.

There are three main approaches to feature selection of which we will be considering an embed-
ded and a wrapper approach. We do not consider filter methods in our investigation as multiple
studies show that wrapper methods continuously outperform filter methods [21]. Embedded meth-
ods employ learning algorithms of which feature selection is a part, whereas wrapper methods wrap
around particular learning algorithms which are used to determine the selected feature subsets to
derive the final classifier [22]. We trained both ML models for every trial, and obtained rankings
for the entire feature set.

4.1 Embedded ML Approach: Extra-Trees Model

The Extremely Randomised Trees (or Extra-trees) algorithm was developed in order to minimise
over-fitting to a random forest model. The Extra-trees model is consistent with the classical top-
down approach to building decision trees just like a random forest model. Fundamentally, this
approach differs from a random forest model, in the way the tree nodes are split: instead of
searching for the most discriminative split thresholds, they are drawn at random for each feature.
The best of these chosen thresholds is used to split the sample [23]. The model also differs from
a random trees model by using the entire training sample (this minimises the bias) rather than
a bootstrap replica (assigned accuracy scores as sample estimates) as implemented in a random
forest model [24]. These aspects of the model have motivated its use in our methodology.

We used a Python library (Scikit-learn [25]) implementation of the Extra-trees classifier, to
train our model. We used the Gini-impurity (measure of frequency of incorrect labels if a feature is



randomly labelled according to the distribution of labels in the data-set [26]) on our classifier. We
also set the minimum number of samples required to split a node to 2. During the training of the
model, the classifier performs an implicit feature selection, the outcome of which may be ranked
according to relative importance of features, also known as the Gini importance [27]. This feature
importance is also calculated by using a Scikit-learn implementation.

The distribution of scores across all 20 trials was consistent for both participants. All the
distributions may be considered to be multimodal, with clusters of features with importance scores
between 0.07 and 0.08 which can be seen in Figure [4 All distributions contain long trains below
scores of 0.06 with all scores having a frequency less than 5.

4.2 Wrapper ML Approach: Sequential Forward Selection Algorithm

Sequential Forward Selection (SFS) is an heuristic search algorithm which starts off with zero
selected features. The first feature is selected (S1 = f;) and given an importance score using a
particular criterion function - the most common of which are Mallow’s C), and Akaike’s criteria [28].
Then pairs of important features are created with S, of which the best one is selected using the
same criterion to form Sy = {f;, f;}. In the next step, sets of three features are formed using S
and the best 3 features are selected to form Sz = {f;, fj, fr}. This cycle is repeated till there is
no improvement to the performance of the previously selected feature [29]. The aim is that the
extended feature set minimises the classification error as compared to any new feature selected.
SFS is mainly chosen for its fast and simple implementation.

We use the Python library, ‘mlxtend’ [30], for implementation of the SF'S algorithm. This library
employs the inbuilt Mallow’s C), criterion function to evaluate performances of features. We use the
k-nearest neighbour (kNN) algorithm as the classifier around which the SF'S algorithm is wrapped.
kNN is a non-parametric learning algorithm primarily used for regression and classification. As
kNN classifies data on instances, the entire computation takes place at the classification point
meaning it is a very time and computationally effective algorithm of order O(1) [31I]. Multiple
studies demonstrate the effectiveness of wrapper methods with kNN classifiers [32], when used with
time series data analogous to our dataset. In our implementation, the number of neighbours for the
k-neighbour queries is 3, with all nodes in the neighbourhood weighted equally. We also employ
the standard Euclidean metric, to compute the distances of the nearest neighbours.

Figure [6] shows the distribution of scores across the first 10 trials, for participant ‘PRA’. The
distribution of scores across all 20 trials was consistent for both participants. All the distributions
may be considered to be multimodal, with clusters of features with importance scores between 0.06
and 0.065. The existence of long tails implies the existence of clusters of features with the same or
similar importance scores. This is better represented in the histogram in Figure

4.3 Trial-wise Blend of Methods

From the ML models (Extra Trees and SFS) and the different distance measures (DTW, Pearson
and Spearman), groups of related features and a ranking on all features is identified, per trial, per
participant. These individual trial results can be amalgamated with a scoring scheme to highlight
the most important features across all trials per participant, combining the relevant trials’ grouping
of features and ML ranking.

For each trial, per participant, the rankings can be used to select the most important feature
for each group. The highest ranking feature from each group can be selected to represent the



whole group. This set of selected features can be ordered again based on the same rankings, in
descending order. For each trial, the most important selected feature, is given a score based on
its position (indices starting at 0, with the best selected feature having a zero score). The scores
for the different selected features are summed across trials, per participant with the feature with
the lowest total score indicating it is the most important feature across the trials. The approach
of the most important feature in a set of selected features having the lowest score rather than the
highest, aims to prevent skewed results in trials where more groups of features were identified.
This is conducted for each configuration of distance measure and ML model, from which the top
n features can be selected for comparison between participants. If a feature is never selected to
represent a group of features, it is not considered amongst the top features (despite having a score
of 0).

5 Results & Discussion

Table [1] gives an example of the results obtained from the amalgamation of the feature reduction
and selection techniques. For the other results please refer to Appendix

Table 1: Top 10 features for PRA, WAN, using DTW, SFS

PRA WAN

Sensor Score | Sensor Score
Lidar_field_ranges3 4 Xsens_field_poses3_position_z 11
Lidar_field ranges351 8 Lidar_field_ranges356 13
Xsens_field_poses3_position_.z 11 Lidar_field ranges354 16
Lidar_field ranges356 12 Lidar_field_ranges353 20
Lidar_field ranges354 16 Lidar_field_ranges351 21
Lidar_field ranges353 18 Lidar_field_ranges355 24
Lidar_field_ranges1 19 Lidar_field_ranges1 26
Lidar_field ranges349 20 Lidar_field_ranges352 28
Lidar_field ranges350 20 Lidar_field_ranges0 28
Lidar_field_ranges5 20 Lidar_field_ranges359 28

The results show that the Xsens sensors consistently provided the most meaningful features.
The only exception to this was the DTW measure combined with the SFS model which mostly
recommends the lidar sensors. It is logical that the Xsens data is likely to be the most meaningful
in indicating the stages of the transfer as they make up 84% of the features. This is despite the
groupings aiming to mitigate some of this bias, by selecting only one feature from a group of
similar features, of which the largest groups are mostly composed of Xsens features (as indicated
in Appendix .

The two statistical methods both produce very similar results, though there is some difference
depending on the ML approach used. Comparing Table |3| with 4] (SF'S) and Table @] with [7] (Extra
Trees) shows that using the same ML approach produces the same list of top 10 features, with
some slight differences in score and ordering. Though the methods differ when the ML approach
is changed, this can be solely attributed to differences in the ML models. For both statistical
methods, all of the top 10 features were Xsens features, as the breakdown of group composition by



sensor in Figures [10a] and [T0b] would suggest, with Xsens features dominating the largest group in
both cases.

More specifically, from the tables of the top 10 features in each combination of methods (shown
in Appendix we see that often the shoulder and shoulder blade sensors on the right side are
favoured by the Extra trees model. With the SF'S method however, the height of the third spinal
sensor proved to be very significant.

With such a small sample size of 2 participants, it is difficult to say whether this would be
reproducible across all new users and more trials and so further trials would have to be conducted
with a greater number of participants to test this.

The knee point selection method relies on a distinct change in the derivative. Applying this
to our data results in Figure 2l Our model heavily relies on the selected threshold value where a
small change in threshold can cause a large change in the number of groups. Exploring alternative
optimisation approaches such as applying a smoothing filter to the threshold graph before applying
the knee point method may drastically change the result. This would reduce the sensitivity to noise
in the data and could provide a more stable result.

The results support the need to select a knee point for feature reduction. It is conducted on
a per trial basis and informs the feature groupings yet produces homogeneity in the results across
participants. It appears to optimise each trial to the same, appropriate level. Other schemes could
be designed to provide different levels of aggression in the feature reduction.

It is clear there is much more variation in the rankings between ML models than within individ-
ual ML models. We can infer from this that the ML models contribute more to differences in the
top 10 features than the two statistical models and DTW. SFS highlights the differences between
participants more than Extra trees.

Our results were often consistent between the two participants suggesting that the importance
of the features is not dependant on the participant. This is especially apparent in Tables 4| and
(as shown in Appendix [F)) where the features and ordering are identical.

The main limitation of SFS is that it is unable to remove features that become redundant
after the addition of other features. SFS assumes that a single interval model is used consistently
throughout. When considering specific feature performance, at the beginning, it does not consider
combinations of features as a starting point. This means it may not result in the optimal solution.

On the other hand, the results for DTW (Tables |2 and |5 differ from the statistical methods.
When using the Extra Trees ML approach with DTW, it produces a similar result to the statistical
methods, with the top 10 list differing by only a small number of features and being solely comprised
of Xsens features. However, when the SFS ML approach is used, the results (Table [2|) drastically
differ from both the statistical methods and the other ML approach combined with DTW. The top
10 features are instead mostly composed of lidar features. This is supported by the breakdown of
group composition by feature for DTW in Figure [I0d in which the second largest group is mostly
made up of lidar features.

The methodology to merge the results of feature reduction and selection appears to yield con-
sistent and plausible results. It aims to select the best representation of each distinctive behaviour
captured by groupings on a per trial basis. This is through selecting the highest ranking feature
within the groupings of features per trial, and then ranking those selected features by the same
ranking. A similar approach could build on this idea to be more robust to new ML models and
different distance measures.

Looking at the score values within the top 10 features tables in Appendix [F] we can see that



overall the Extra trees model produces much lower scores than the SF'S model. This could have
two inferences based on the frequency of the low scoring features being initially selected from the
groupings. For features that are selected in only a few trials, their scores may improperly represent
their importance. This is because no penalties are applied for importantly ranked features with low
frequency appearances in the selected features. Conversely, if the feature was ranked many times
and still maintained a low score, the value will be more meaningful and so we can be more confident
of its accuracy. To quantify the significance of low scoring features, a valuable development of this
method would be to track the number of times a feature is selected across trials, as well as its
ranking when it appears.

It is also vital to note that the rankings between tables are not directly comparable. For example,
two features that have both been ranked first in importance may not have equal significance with
regards to the sit-to-stand transfer.

We assumed that the robot moves in an entirely synchronised fashion with the participant
throughout the transfer, our method relies heavily on the linear encoder data. This data was the
basis of our decision to crop the features.

The application of the methods that we have designed could extend to prediction of the transfer.
This could be implemented by accounting for the data prior to the transfer to identify the point
at which the transfer occurs. The process involving feature reduction and selection then would
identify key features that include some description of the transition from sitting to the transfer.

6 Conclusion

We have developed a suite of methods to evaluate feature importance on a trial and participant-wise
basis. We introduced a new method to select distinctive behaviours assessed during the grouping
process on a trial-wise basis. The Xsens suit proved to be most fruitful in terms of picking out
features across different trials and participants. However, the SFS-DTW combination resulted
in the lidar sensors being ranked as more important than other sensors in the dataset. The ML
methods give slightly contrasting results: the Extra-trees model highly ranks the right shoulder and
the shoulder blade sensors as compared to the SFS model, where the height of the third spinal sensor
was favoured. We discovered that the ML methods contribute more to variations in the rankings for
the top features than the statistical models and DTW. In the ML models, Extra Trees performed
better than SF'S in terms of differences in feature rankings. The homogeneity between features
selected across participants validates our use of the knee point for feature reduction. More general
results are hard to draw with only 2 participants and feature difference between 2 participants are
of limited use. Our method is also limited by the lack of penalties for importantly ranked features,
with low frequency appearances in the features selected per trial. A similar methodology could be
applied to data prior to the transfer. It would enable extended functionality that could identify
features which predict the sit-to-stand transfer.
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A EDI statement

We quickly split our problem into several sub-problems, which were able to be tackled by 1 or 2
people. This meant the workload was distributed equitably from the beginning. Naturally some of
the approaches weren’t as successful as others however we quickly re-distributed ourselves based on
what we felt were our strong areas. This adaptability ultimately lead to the successful completion
of our project.

B COVID mitigation statement

We were unable to meet in person with some members not returning to Bristol after the Christmas
period, although we had no problem collaborating using online platforms. We used Facebook
messenger for time sensitive communication as well as Microsoft Teams for group meetings. This
meant that we were able to effectively keep in contact. We had some issue with internet speeds
during online meetings, although it was quickly and easily overcome and as such it didn’t have any
adverse effects on our progress. Overall we successfully mitigated the disruption due to COVID.
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C Stickman

(a) Xsens sensors while sitting (b) Xsens sensors during the sit (c¢) Xsens sensors while standing
before the sit to stand transfer to stand transfer after the sit to stand transfer

Figure 3: A Figure showing the Xsens sensor data for participant WAN, trial 1 visualised in 3D
space. The joints are labelled according to their number in the dataset.
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D Extra Trees Histogram

Extra Trees Model: Feature Importance Score Distribution across Trial 1 - Participant PRA
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Figure 4: A histogram of the feature importance scores for the Extra Trees model for trial 1 for
participant ‘PRA’. The horizontal axis shows the feature importance scores in arbitrary units.
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E Violin Plots

Extra Trees Model: Feature Importance Score Distribution across 10 trials - Participant PRA
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Figure 5: A violin plot of the feature importance scores for the Extra Trees model (participant
‘PRA’) for 10 trials. The horizontal axis shows the trial numbers. The vertical axis shows the
distribution of scores across the trial and may be compared to Figure [ for similarities. The feature
importance scores have arbitrary units. Smoothing bandwidth = 0.02
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SFS Model: Feature Importance Score Distribution across 10 trials - Participant PRA
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Figure 6: A violin plot of the feature importance scores for the SF'S model (participant ‘PRA’) for
10 trials. The horizontal axis shows the trial numbers. The vertical axis shows the distribution of
scores across the trial and may be compared to Figure [4] for similarities. The feature importance
scores have arbitrary units. Smoothing bandwidth = 0.02
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F Result Tables

Table 2: Top 10 features for PRA, WAN, using DTW, SFS - shown in section |5| as Table

PRA WAN

Sensor Score | Sensor Score
Lidar_field_ranges3 4 Xsens_field_poses3_position_z 11
Lidar_field ranges351 8 Lidar_field_ranges356 13
Xsens_field_poses3_position.z 11 Lidar_field ranges354 16
Lidar_field ranges356 12 Lidar_field_ranges353 20
Lidar_field ranges354 16 Lidar_field_ranges351 21
Lidar_field ranges353 18 Lidar_field_ranges355 24
Lidar_field ranges1 19 Lidar_field_rangesl 26
Lidar_field ranges349 20 Lidar_field_ranges352 28
Lidar_field ranges350 20 Lidar_field_ranges0 28
Lidar_field_rangesb 20 Lidar_field_ranges359 28

Table 3: Top 10 features for PRA, WAN, using Spearman, SFS

PRA WAN

Sensor Score | Sensor Score
Xsens_field _poses3_position_z 11 Xsens_field_poses3_position_z 11
Xsens_field _poses4_orientation.w 32 Xsens_field _posesl_position_z 37
Xsens_field _poses1_position_y 36 Xsens_field poses6_position_y 40
Xsens_field_posesl_position_z 37 Xsens_field_poses10_position_y 42
Xsens_field_poses6_position_y 40 Xsens_field_posesl5_orientation z 42
Xsens_field_poses10_position_y 42 Xsens_field_poses2_position_z 43
Xsens_field_poseslb_orientation z 42 Xsens_field_posesl_position_y 65
Xsens_field _poses2_position_z 43 Xsens_field_poses4_position_y 91
Xsens_field _poses4_position_y 91 Xsens_field_poses12_position_z 95
Xsens_field_poses12_position_z 95 Xsens_field_poses2_position_y 121
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Table 4: Top 10 features for PRA, WAN, using Pearson, SFS

PRA WAN
Sensor Score | Sensor Score
Xsens_field_poses3_position_z 11 Xsens_field_posesl_position_z 37
Xsens_field_posesl_position_z 37 Xsens_field _poses6_position_y 40
Xsens_field_poses6_position_y 40 Xsens_field _poses10_position_y 42
Xsens_field_poses10_position_y 42 Xsens_field_posesl5_orientation_z 42
Xsens_field_poseslb_orientation_ z 42 Xsens_field _poses2_position_z 43
Xsens_field _poses2_position_z 43 Xsens_field _poses3_position_z 44
Xsens_field_posesl_position_y 65 Xsens_field _poses4_position_y 91
Xsens_field _poses4_position_y 91 Xsens_field_posesl_position_y 94
Xsens_field _poses12_position_z 95 Xsens_field _poses12_position_z 95
Xsens_field _poses2_position_y 121 Xsens_field _poses2_position_y 121
Table 5: Top 10 features for PRA, WAN, using DTW, Extra Trees
PRA WAN
Sensor Score | Sensor Score
Xsens_field_poses14_position_z 0 Xsens_field_poses14_position_z 0
Xsens_field_poses7_position_y 0 Xsens_field_poses7_position_y 0
Xsens_field _poses8_position_z 1 Xsens_field _poses8_position_z 1
Xsens_field _poses4_position_z 2 Xsens_field _poses4_position_z 2
Xsens_field_poses13_position_z 3 Xsens_field_poses13_position_z 3
Xsens_field _poses12_position_y 3 Xsens_field _poses12_position_y 3
Xsens_field_poses19_orientation_z 4 Xsens_field_poses19_orientation_z 4
Xsens_field _posesl1_position_y 4 Xsens_field _posesl1_position_y 4
Xsens_field _poses2_position_y ) Xsens_field poses2_position_y )
Xsens_field_poses11_position_x 7 Xsens_field poses8_position_y 6

Table 6: Top 10 features for PRA, WAN, using Spearman, Extra Trees

PRA WAN

Sensor Score | Sensor Score
Xsens_field_poses7_position_y 0 Xsens_field_poses7_position_y 0
Xsens_field _poses8_position_z 1 Xsens_field _poses8_position_z 1
Xsens_field_posesl4_position_z 2 Xsens_field_posesl4_position_z 2
Xsens_field _poses4_position_z 2 Xsens_field _poses4_position_z 2
Xsens_field _poses19_position_y 2 Xsens_field _poses19_position_y 2
Xsens_field_poseslb_position_z 3 Xsens_field _poseslb_position_z 3
Xsens_field_posesl9_orientation z 4 Xsens_field_posesl9_orientation z 4
Xsens_field_poses13_position_z 6 Xsens_field _poses13_position_z 6
Xsens_field_poses12_position_y 6 Xsens_field_poses12_position_y 6
Xsens_field_poses8_position_y 6 Xsens_field_poses8_position_y 13
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Table 7: Top 10 features for PRA, WAN, using Pearson, Extra Trees

PRA WAN

Sensor Score | Sensor Score
Xsens_field _poses7_position_y 0 Xsens_field _poses7_position_y 0
Xsens_field _poses8_position_z 1 Xsens_field _poses8_position_z 1
Xsens_field _poses4_position_z 2 Xsens_field_poses4_position_z 2
Xsens_field_posesl4_position_z 4 Xsens_field_posesl4_position_z 4
Xsens_field_poses19_orientation z 4 Xsens_field_poses19_orientation z 4
Xsens_field _poses19_position_y 4 Xsens_field_posesl5_position_z 6
Xsens_field_poseslb_position_z 6 Xsens_field _poses12_position_y 9
Xsens_field_poses13_position_z 9 Xsens_field _poses19_position_y 10
Xsens_field_poses12_position_y 9 Xsens_field _poses13_position_z 12
Xsens_field_poses8_position_y 13 Xsens_field_poses11_position_z 12

G Distance Distribution

Distribution of Spearman distances between all features for PRA, trial 1
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Figure 7: A plot showing the distribution of distances between all features for the Spearman
statistical method for participant PRA, trial 1.
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Distribution of Pearson distances hetween all features for PRA, trial 1
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Figure 8: A plot showing the distribution of distances between all features for the Pearson statistical
method for participant PRA, trial 1.

Distribution of DTW distances between all features for PRA, trial 1
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Figure 9: A plot showing the distribution of distances between all features for the DTW method
for participant PRA, trial 1.
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H Sensor Breakdowns

Largest groups of features by sensor type
for PRA, trial 1, using Spearman
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Largest groups of features by sensor type
for PRA, trial 1, using Pearson
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Figure 10: Plots showing the compo-
sition of sensor type per group for the
top 40 groups in PRA trial 1 for Spear-
man @, Pearson (E[) and DTW .
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