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1 Introduction and Background

The fast and accurate diagnosis of infectious diseases is crucial to saving lives and relieving pressure
on health services, this being especially important during the current world pandemic. In partic-
ular, the average diagnosis for bacterial infections can take up to 2 days, yet 30% - 50% of these
diagnoses may still be incorrect [7, 3]. This results in the dangerous over-prescription of antibiotics,
which has caused a sharp rise in the level of antibiotic resistance, in addition to other complications
such as clinical failure, adverse drug effects and rise in costs for hospitals and patients [5]. One such
complication of over-prescription has resulted in the antibiotic resistance of Clostridium difficile
bacteria; there were an estimated 13,286 C.difficile infections in 2018 in the UK of which ≈ 36%
required hospitalisations [18]. In this paper, we investigate how the use of fluorescence microscopy
can assist in efficiently detecting, identifying and measuring bacteria, and how it can improve the
diagnostic process.

Using the properties of fluorescence, a Bristol based start-up called Fluoretiq Limited have devel-
oped a Nanoplex™ platform that can be used to diagnose bacterial infections in less than 15 minutes.
When light of a particular wavelength is incident on particles, they are temporarily excited to a
higher-energy state. As they relax back down to the ground state they release this energy in the
form of light, at a different wavelength. The level of excitement, time delay and colour of light
emitted can be used to identify which particle is present in the sample, and the intensity of the
emitted light can be used to quantify the concentration of the specific particle.

On certain bacteria, there exist appendages called fimbriae and the tips of these fimbriae have
fimH proteins which bind to specific glycans in the body to establish an infection [14]. These gly-
cans can be artificially mimicked with specially developed fluorescent carbon nano-dots, which are
mixed with a suspected bacterial sample [2]. Then, by separating the bacteria from the sample and
exposing them to a light source within a detector, it is possible to identify any bacteria present,
and determine how severe the infection is based on the bacterial concentration. In doing this, an
informed diagnosis can be made, leading to the correct initial treatment of a bacterial infection.

All code used in this report may be found at https://github.com/vedang-joshi/MDM3Rep1.

2 Methodology

We have separated the modelling process into three phases: binding, fluorescence and bacterial
enumeration. The first is a chemical stage, the second a quantum process, and the third a pro-
portionality that relates the detected light intensity to bacterial concentration. The fluorescence
photokinetics can be further broken down into two methods: one assuming a generic approach
which serves to understand the process as a whole; and the other accounting for photobleaching
within the system.

2.1 Binding Process

The first stage of the model describes the binding of carbon nano-dots to the fimH protein. This
binding process can be modelled as a reversible chemical reaction, from which we can derive a
system of differential equations using the law of mass action.

F + C
r1
r−1

B, (1)

where F is a fimH protein, C is a carbon nano-dot and B is the resulting bound molecule. The
constants r1 and r−1 represent the rates of the forwards and backwards reactions respectively. This
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equation assumes that there is a 1 : 1 binding ratio between the fimH proteins and carbon nano-
dots, such that multivalent binding does not occur. By assuming the case in which multiple carbon
nano-dots bind to one fimH, and the case in which multiple fimH bind to one carbon nano-dot to
be equally likely, we can approximate the average binding ratio to be 1 : 1 over a large number of
reactions.

By applying the law of mass action to eq. 1, the changes of the concentrations of the reactants and
products can be modelled as,

df

dt
= r−1b− r1fc, (2)

dc

dt
= r−1b− r1fc, (3)

db

dt
= r1fc− r−1b, (4)

where f is the concentration of fimH, c the concentration of carbon nano-dots and b the concentra-
tion of bound molecules.

At time t = 0, the initial conditions f(0) = f0, c(0) = c0 and b(0) = 0, can be described by the
following set of equations:

f(t) + b(t) = f0, (5)

c(t) + b(t) = c0, (6)

Figure 1 shows the dynamics of the binding process by depicting how the above system of ODEs
stabilises. We can see that the concentrations of the reactants and products reach a steady state.
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Figure 1: Numerical solution of ODEs in Eq. (2)-(4) assuming f0 = 10, c0 = 12 and r1 = 0.5 and
r−1 = 1.1 (arbitrary constants).
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2.2 Fluorescence Photokinetics: A Simple Photocycle Model

Live-cell fluorescence microscopy has allowed researchers to quantify the amount of organisms in
any particular solution by studying the kinetics of the fluorescence processes. From this, we can find
the exact distribution of the carbon nano-dots within the diagnostic assays. We take inspiration
from the law of mass action to develop a simple model of fluorescence and hence, aim to understand
the limitations of fluorescence (e.g. photobleaching, explored in section 2.3).

We start with a simple photo-cycle as shown in eq.(7),

Bn

k1
k−1

Be, (7)

where Bn is the non-excited state, Be is the excited state of the molecule after the binding process
with the carbon nano-dots, k1 is the absorption rate constant and k−1 is the fluorescence rate
constant. Again, using the law of mass action, we get the following coupled system of ODEs.

dbn
dt

= −k1bn + k−1be, (8)

dbe
dt

= k1bn − k−1be, (9)

where the absorption constant, k1 can be defined as the illumination intensity, Iex, multiplied by
the absorption cross-section, σex, of the fluorescing molecule for the given wavelength of excitation
[20], k1 = Iex ·σex . We can relate the absorption cross-section to the molar attenuation coefficient,
ε, as σex = (2303 · ε)/NA. In this case, NA represents Avogadro’s number [9]. Solving this coupled
system analytically,

bn(t) =
C2 · k−1

k1
− C1 · e−t(k−1+k1), (10)

be(t) = C2 + C1 · e−t(k−1+k1), (11)

where C1 and C2 are constants dependent on the initial conditions of the system.
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Figure 2: A plot of the solutions to the coupled ODEs in eq.(10)(11) assuming bn(0) = 10, be(0) = 0,
and k1 = k−1 = 0.1
.
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It can be seen in figure 2 that bn(t) and be(t) both reach a steady state. The dynamics of the steady
states must be analysed to see how they vary for different values of the rate constants k1 and k−1.

As eq. 7 conserves mass, we can say that bn + be = bn(0), where bn(0) is the initial value of
bn(t). Substituting this into eq. 10,

dbn
dt

= −k1bn + k−1(N − bn). (12)

The steady state values of bn and be can be found by taking dbn/dt = 0, hence,

bns =
k−1bn(0)

k1 + k−1
, (13)

bes = bn(0)− k−1bn(0)

k1 + k−1
=

k1bn(0)

k1 + k−1
, (14)

where bns and bes are the steady state values of bn(t) and be(t) respectively.//
The steady state values of bn and be can be plotted against varying values of k1 and k−1 to determine
the impact of rate constants on the fluorescence intensity (which is related to the steady state value
of be). It can be seen in figure 3 that when k1 � k−1, bns ≈ 0 and bes ≈ bn(0), and when k−1 � k1,
bns ≈ bn(0) and bes ≈ 0. Hence in order to maximise the intensity of fluorescence detected, the
rate of the forward reaction must be much larger than the rate of the backward reaction, k−1, as
in this case the steady state value of the concentration of excited molecules is greatest.
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Figure 3: A plot of the steady state values of bn(t) and be(t), (a) and (b) respectively, for varying
values of k1 and k−1, assuming k±1 = 1 when small and consists of 100 evenly distributed values
in the interval [0, 50] when varied.

2.3 Fluorescence Photokinetics: Photobleaching Model

The initial model does not take into account that if the bound excited molecules are exposed to
prolonged excitation, they are destroyed. This means that such molecules are irreversibly taken
out of the photo-cycle we refer to above. This effect is known as ‘photobleaching’. Photobleaching
depletes the bound molecule store so fewer molecules are available for excitation, thereby reducing
the observed fluorescence. Evidence for photobleaching during E.coli detection has been provided
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within the literature on several counts [17, 16], thus it is imperative to represent this behaviour in
our subsequent model. We adjust our initial model to add another intermediate step in the photo-
cycle, Bi, and add an irreversible reaction step to the state, Be, to account for the photobleaching
effect. The change of states between the excited state and the intermediate state is called internal
conversion [11]. Here we extend the work by Wüstner et al. [20] and we take inspiration from
Jablonski’s diagram (see Appendix B and [1]) with a ground state, Bn, an intermediate state, Bi,
and an excited state, Be. We can model this system as follows,

Bn

k1
k−1

Bi

k1
k−2

Be

k3−→, (15)

where k1 is the absorption rate constant across the three states, k−1 is the fluorescence rate constant,
k−2 is the internal conversion rate constant and k3 is the intrinsic bleach rate constant. We justify
the use of a single constant k1, across the three states, as in Jablonski’s diagram of fluorescence,
the absorption occurs from state Bn to Be through state Bi. We obtain the following system of
ODEs, 

dbn
dt

dbi
dt

dbe
dt

 =


−k1 k−1 0

k1 −(k−1 + k1) k2

k1 −k2 −k3



bn

bi

be

 (16)

and then solve this system analytically and simplify the results,

bn(t) = e−k1t(C1 +

∫
k−1 · ek1tbi(t)dt), (17)

bi(t) = e−t(k1+k−1)(C1 +

∫
et(k1+k−1)(k1bn(t) + k−2be(t))dt), (18)

be(t) = e−t(k−2+k3)(C1 +

∫
k−1 · et(k−2+k3)bi(t)dt), (19)

where C1 is a constant dependant on the initial conditions of the system. We conduct a symbolic
eigenvector and eigenvalue analysis on the system presented in Appendix A where the diagonal
of the eigenvalues matrix shows the eigenvalues corresponding to the each of the columns of the
eigenvectors matrix.

In figure 4, we overlay the fluorescence intensity-time graph (in black) from Pu and Alfano’s work
[15] on photon emission from stained cancerous tissues to our model of fluorescence. Although Pu
and Alfano obtained their results from a different experimental setup to the one used by Fluoretiq,
the dynamics of the fluorescence system closely resemble the dynamics of our model (In figure 4
comparing the black and the red curves). Similarly in both graphs, the unexcited particles decay
from a starting condition. However, the intermediate state and the excited state particles quickly
increasing to a maximum, and then decaying to zero when the photobleaching and fluorescence
processes occur. We infer that the concentration and intensity are linked by a constant of proportion.
This relationship is investigated further in our next model.

2.4 Fluorescence Photokinetics: Proportionality Model

The intensity of fluorescence detected can be modelled as being directly proportional to the concen-
tration of bound molecules. As the concentration of bound particles reaches a steady state, we use

5



 

Figure 4: A plot of the solutions for the coupled ODEs shown in eq.(17)-(19) assuming bn(0) = 10,
bi(0) = 0, be(0) = 0 and k1 = 0.1, k−1 = 0.07, k−2 = 0.08, k3 = 0.01. The black line overlaid shows
the dynamics of fluorescence intensity against time looking at stained cancerous tissues [15].

this steady state value under the assumption that the reaction reached this state before fluorescence
occurs.

nphoton = Ωbs, (20)

where nphoton is the number of photons detected, Ω is a constant, and bs is the steady state value
of f(t). Using eq. 6,

nphoton = Ω(c0 − cs), (21)

where c0 is the initial concentration of carbon nano-dots and csteady is the steady state value of c(t).
To estimate parameter Ω we fit our model against data provided by Fluoretiq. The data consists
of seven points of carbon nano-dot concentration and the resultant number of photon count events
detected. In order to estimate Ω, the model was fitted to the data by minimising the sum squared
error. The fit given in figure 5 estimates the value of Ω as Ω = 2.3729× 103.

2.5 Concentration of Bacteria

As we are taking the steady state values of our ODE we can take df/dt = 0, then using eq. 2 & 6,

fs =
r−1bs

r1(c0 − bs)
, (22)

where fs is the steady state value of f(t), bs = nphoton/Ω from eq. 20.

Hence using eq. 5,

f0 =
nphoton

Ω
+

r−1nphoton

r1(Ωc0 − nphoton)
. (23)
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Figure 5: Minimised sum squared error fit of eq. 21 against seven data points to estimate Ω.

The number of bacteria in a sample is simply given by,

nbact =
f0

nfimH
, (24)

where nbact is the number of bacteria, f0 is the initial concentration of fimH, and nfimH is the number
of fimH per bacteria. The number of fimbriae containing fimH on an individual E. coli ranges from 1
to 1000 [10]. The number of E. coli we would find in a sample is sufficient such that we can take the
average value of that range. Hence the number of fimH per bacteria can be taken to be nfimH = 500.

The intensity of fluorescence detected is related to the number of photons detected via the relation
[6],

I =
nphotonhv

At
, (25)

where I is the intensity of detected fluorescence, h is Planck’s constant, v is the frequency of detected
fluorescence, A is the area of the detector, and t is the integration time. Hence for a given value of
detected intensity, the number of bacteria can be calculated in the case that all the constants are
known.

3 Discussion

3.1 Noise

There are a few factors in the measurement of fluorescence intensity that can contribute towards
noise in the data. The most significant of these is the autofluorescence of naturally occurring fluo-
rophores in urine, which contributes towards the overall photon count. Fluorophore concentration
varies between individuals due to diet [12], and consumption of vitamin supplements [13]. Taking
a fluorescence measurement for a control sample with no carbon nano-dots will give a background
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photon count, which can be subtracted from the overall photon count of the analysed sample. This
ensures the reading is not inflated due to this background noise.

The measurement of photon count, is limited by the stochastic nature of photon emission, the
photon noise, which follows a Poisson distribution with mean equal to the square root of the photon
count. There are three principle types of noise which contribute to our model: photon noise, read
noise (due to the measurement error of the equipment), and dark noise (due to electron excitement
by thermal energy). Fortunately, for high values of photon counts, such as the cases considered
in our model, read noise and dark noise become negligible and photon noise dominates [4]. This
means that we can instead estimate the photon noise of our system, Mphoton, to follow a Gaussian
distribution [19],

Mphoton ∼ N (
√
n̄photon,

√
n̄photon). (26)

Since we take two readings, one for the background fluorescence and one for the main reading
there will be two distributions with different means and variances. Combining these models by
subtracting their means and adding their variances will give us a Gaussian distribution for the
overall noise of the system.

Mtotal ∼ N (
√
n̄photonCD

−
√
n̄photonAF

,
√
n̄photonCD

+
√
n̄photonAF

) (27)

where nphotonCD denotes the photon count in a sample with carbon nano-dots added and nphotonAF

denotes the photon count in control sample.

Modelling the noise is especially important when performing statistical analysis on the results. This
distribution allows us to assess whether the measured fluorescence intensity is sufficient to diagnose
the patient positive for a specific infection, or deduce whether further testing is necessary.

3.2 Rates of Reaction

We can deduce that a high rate of forward reaction in eq. (2)-(4) is favourable as the time taken
to bind the carbon nano-dots and the fimH is shorter yet they will all still bind. We can increase
the rate of reaction in several different ways. We can increase the temperature of the reaction con-
ditions, which will lead to more collisions and hence, more binding of the reactants. Alternatively,
we could increase the concentrations of the reactants [8].

Increasing the concentration of the reactants will result in more effective collisions per unit time
which is effectively the rate of the reaction. For the set of equations representing the binding process
of the reactants, we can increase the initial concentrations of both fimH proteins and the carbon
nano-dots to see what effect this has on the speed of the reaction.

We can see that the rate of reaction in figure 6 is relatively faster than that of the reaction modelled
in figure 1, as the concentrations have a further decrease in the same amount of time than with the
lower starting concentrations. Concentration is also proportional to fluorescence intensity, so on
balance, a high starting concentration for both of the reactants will maximise the time efficiency of
the entire process.

3.3 Integration Time

The integration time of the detector (how long readings of the photon count are taken for) is one
of the easiest parameters to vary while carrying out the procedure in order to optimise it. As such,
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Figure 6: Numerical solution of ODEs in eq.(2)-(4) assuming f0 = 20, c0 = 24 and r1 = 0.5 and
r−1 = 1.1 (arbitrary constants).

we examined how varying the integration time affected the results of our model.
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Figure 7: Fluorescence intensity detected against number of bacteria for arbitrary constants k1 =
1.2, k2 = 1.1, c0 = 3 and nphoton values from data obtained. Ten values for integration time are
equally spaced in the interval [0.01, 0.03].

It can be seen in figure 7 that a larger integration time results in a lower intensity for the same
number of bacteria present in the sample. As such, to avoid saturating the detector while analysing
samples with large numbers of bacteria, a large integration time would be necessary. However, this
would not work in practice as too large of an integration time would lead to photobleaching and
would introduce too much noise into the detector.
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3.4 Further Developments

One of the principle assumptions for this model is that the binding ratio is 1:1. Consequently, the
steady-state values would be altered and we could not optimise the number of carbon nano-dots
for a bacterial sample. However, this assumption does enable us to simplify the dynamics to be
understandable and manipulable. In future models, we could investigate how the stoichiometry in
the binding process affects the dynamics.

Furthermore, using precise starting concentrations will reveal how the model behaves over a more
realistic scale. We have also used some constants specific to E.coli, whereas other bacteria will
have different binding affinities and number of fimbriae so the model would require modification to
represent other bacterial infections.

4 Conclusion

In this paper, we have developed a suite of mathematical models to describe the binding process
of bacteria to the carbon nano-dots developed in the Nanoplex platform by Fluoretiq. The models
show a fluid progression of modelling the fluorescence dynamics from a simple photocycle to a more
generic model describing any potential photobleaching in the system. We also modelled the con-
centration of bacteria in simulated assays set up during the diagnostic process. The analysis was
performed either by solving the systems of ODEs analytically, examining the steady state nature of
the system, or by fitting curves to the data obtained from Fluoretiq. This allowed us to understand
how bacteria is detected in the Nanoplex platform through a set of varying parameters.

The model of the binding process revealed that the concentrations of the reactants and products
reach a steady state over a large time frame. This time frame was closely linked to the rates of
reaction (r1 and r−1), which in turn were determined by the association and dissociation rates
between the carbon nano-dots and the fimH proteins. The main limitation of our model is the
assumption that there exists a 1:1 ratio between the reactants, which simplified our model, yet may
be unrealistic.

We first developed a simple model of the fluorescence process, treating it as a reversible reaction
before using the law of mass action to derive a system of ODEs describing the relative concentra-
tions of excited and non-excited molecules. The intensity of fluorescence is then determined by
the concentration of excited molecules. In our second model of fluorescence, taking reference from
Jablonski’s diagram, we added an intermediate state to allow for internal conversion. Additionally,
we accounted for the effects of possible photobleaching by adding an absorption term representing
the destruction of molecules.

By taking our second model of the photokinetics of the fluorescence process and comparing the
dynamics resulting from our model to that of [15], we determined that the intensity of fluorescence
is proportional to the concentration of bound molecules. We fit our proportional model to data
to estimate the constant of proportionality (Ω = 2.3729 × 103). Then, by using the steady state
solutions of our ODEs describing the binding process, the intensity of fluorescence detected was
directly related to the initial concentration of fimH, from which the number of bacteria can be
simply calculated. Hence, given that the rate constants of the binding process are known, for any
intensity detected, the number of bacteria present in the sample can be found.
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Appendix A Eigenvector and Eigenvalue Analysis for Fluo-
rescence Photokinetics: Photobleaching Model

Eigenvectors matrix:


k2σ

2
5

σ1
+ σ6 − σ2σ5

k1σ9

k2σ
2
4

σ1
+ σ6 − σ2σ4

k1σ9

k2σ
2
3

σ1
+ σ6 − σ2σ3

k1σ9
σ2
5

σ9 + σ7 − (k1k2k3)σ5

σ9

σ2
4

σ9 + σ7 − (k1k2k3)σ4

σ9

σ2
3

σ9 + σ7 − (k1k2k3)σ3

σ9

1 1 1



where,

σ1 = k−1k
2
1 − k1k

2
2 + k−1k1k2

σ2 = k−1k1 + k1k2 + k−1k2 + k2k3

σ3 = 2k1
3 + k−1

3 + k3
3 −

σ11

2σ10
+ σ10

2 − σ8

σ4 = 2k1
3 + k−1

3 + k3
3 −

σ11

2σ10
+ σ10

2 + σ8

σ5 = 2k1
3 + k−1

3 + k3
3 −

σ11

σ10
− σ10

σ6 =
k32+k1k−1k3+k1k2k3+k−1k2k3

k1σ9

σ7 =
k22+k3k2+k1k3

σ9

σ8 =

√
3(
σ11
σ10

+σ10)i

2
σ9 = −k2

2 + k−1k2 + k1k−1

σ10 =(

√
(
σ3
16

27 − σ12 + σ14 + σ13 − σ15)2 + σ3
11 −

σ3
16

27 + σ12 − σ14 − σ13 + σ15)
1
3

σ11 = 2k1k3
3 + k−1k3

3 − σ2
16

9 +
k21
3 +

k22
3

σ12 =
σ16(k21+2k1k3+k22+k−1k3)

6

σ13 =
k21k3

2

σ14 =
k1k

2
2

2

σ15 = k1k−1k2
2

σ16 = 2k1 + k−1 + k3

Eigenvalues matrix:

σ2 − k−1

3 −
k3
3 −

σ3

σ2
− 2k1

3 0 0

0 σ3

2σ2
− k−1

3 −
k3
3 −

2k1
3 −

σ2

2 − σ1 0

0 0 σ3

2σ2
− k−1

3 −
k3
3 −

2k1
3 −

σ2

2 + σ1


where,

σ1 =

√
3(
σ3
σ2

+σ2)i

2

σ2 =(

√
(
σ3
5

27 − σ4 +
k1k22

2 +
k21k3

2 − k1k−1k2
2 )2 + σ3

3 −
σ3
5

27 + σ4 − k1k
2
2

2 − k21k3
2 + k1k−1k2

2 )
1
3

σ3 = 2k1k3
3 + k−1k3

3 − σ2
5

9 +
k21
3 +

k22
3

σ4 =
σ5(k21+2k1k3+k22+k−1k3)

6
σ5 = 2k1 + k−1 + k3
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Appendix B Jablonski’s Diagram
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Appendix C EDI Evaluation

There may not seem to be any obvious underlying ethical implications with the analysis of a urine
sample however there are a few important factors to consider. As with any medical process we
must respect that everyone legally has the right to doctor-patient confidentiality; a doctor may
not discuss anything said between themselves and a patient unless strictly specified. This has
consequently made it difficult to access data on which to test our model. Fortunately, since ours
is a theoretical mathematical model, this has not been a notable issue in terms of the theory or
assumptions behind our equations. However further testing must be carried out with further data
only available to doctors before our model sees any real world application.

As previously mentioned, those taking pregnancy supplements or vitamin supplements, perhaps for
an underlying health condition, may change the makeup of the urine sample and lead to a higher
concentration of naturally occurring fluorophores. It is therefore important to determine the noise
due to autofluorescence individually for every patient rather than relying on data taken over an av-
erage of patients. This ensures everyone has access to this method of diagnosis and it is as inclusive
as possible.
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Appendix D COVID-19 Mitigation

Doing any project during COVID is made more difficult because you can not meet up as easily
with your group to discuss and present ideas to one another. To combat this problem, we made a
team on Microsoft Teams that we would share any relevant documentation into and held meetings
on this too.

Some members were in an isolation period whilst the project was going on, due to either a positive
test or having come into contact with someone who had the virus. Due to this, we sometimes could
not all attend the meetings, leading to some of the group members not fully keeping up to date with
the progress that had been made at the meeting. For the members that had received a positive
test, we could not do as much work as we would hope to do during this isolation period due to the
effects of the virus.

Due to the fact that all meetings were completed at home remotely, sometimes the efficiency of
these meetings was affected by the quality of internet connection that group members were experi-
encing. Occasionally, some of us could not join parts of the meeting because the internet connection
could not support the call. We did solve these problems however, by making sure we held catch up
meetings, to discuss any progress that had been made in the past week.
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