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Abstract

The complexity of systems in bio-network studies requires a method of study to simplify these
networks into meaningful subdivisions. Their importance can then be quantified according
to predefined centrality measures, to better understand the functions of these systems. We
critically examine Koschützki and Schreiber’s approach to ranking genes in gene regulatory
networks and note that there are other ways to rank genes apart from using correlation co-
efficients for different centrality measures. Through an extensive literature review, we find
that Koschützki and Schreiber’s paper still remains one of the few definitive studies of ranking
hierarchically significant genes after 11 years from publication.

1 Introduction

Complex systems such as cellular and protein
connections in biological systems can be mod-
elled mathematically using networks. It is eas-
ier to study these networks by studying the
vertex connections between points rather than
analysing the elements of the network sepa-
rately [1, 29]. To understand how these net-
works behave, a comparative analysis using dif-
ferent centrality measures, of structurally sim-
ilar modules across different species may lead
to the understanding of the evolution of dif-
ferent network structures [26] and contribute
to the body of knowledge. This paper fo-
cuses on summarising and critiquing the differ-
ent centrality measures explained in Koschützki
and Schreiber’s paper [15] and tries to relate,
with simplifications, these centrality measures
specifically the motif based centralities to gene
regulatory networks (GRNs). The authors as-

sume prior knowledge of GRNs, which is un-
derstandable considering the targeted audience
for the paper. Yet for the purpose of com-
pleteness, GRNs are systems consisting of many
thousands of pieces of DNA sequences wherein
each piece receives and processes multiple in-
puts (a surjective function), in the form of regu-
latory proteins that recognise specific sequences
within them. The end result is the increase
or decrease of production of RNA and other
proteins [23, 5]. This understanding is moti-
vated by the importance of such networks in
drug development and studying normal and dis-
eased (cancerous) cell behaviours. Other evi-
dence also suggests that this inter-connectivity
between vertices in protein interaction networks
is important to understanding lethality (a type
of genetic interaction where the co-occurrence
of two genetic events results in organismal or
cellular death [9, 2]). To aid bio-mathematical
research, Koschützki and Schreiber introduce
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the definitions of directed graphs, motifs and
other notations in graph theory. They go on
to introduce the centralities degree, closeness,
shortest path betweenness and motifs and how
it relates to ranking the important global reg-
ulators i.e. within the top 25 (top 2% of all
genes) genes. The authors have thus clearly
outlined their proposals for the paper and have
backed it with the relevant literature. They also
split the paper into two parts, the first one, to
outline the theory behind why certain centrality
measures are preferred over others. The second
part then uses data gathered by Salgado [25]
to compare centrality measures to give the best
measure(s) to analyse the data.

2 Graph theory

Koschützki and Schreiber start by describing
networks being represented as a mathematical
model called graphs. A directed graph G =
(V, E) consists of a finite set vertices (V) and
edges (E) with certain directions and for any
vertex x ∈ G(V ), the set of vertices adjacent to
x is called the neighbourhood N(x) of x. A walk
is defined as a sequence of edges such that the
end vertex of an edge ei is the start vertex of an
edge ei+1. The walk is called a path if all edges
and vertices are not repeated more than once.
A shortest path is the path between two vertices
with minimal length, also called a geodesic. The
authors then define isomorphism as a one-to-
one correspondence between the vertices of two
graphs and if the direction of the edges also di-
rectionally correspond to the edges in the other
graph. Motifs are defined as recurrent and sta-
tistically significant sub-graphs of a given graph
[21, 14]. Here throughout the first section, the
authors assume the readers to have no back-
ground in graph theory, which also helps to in-
crease the clarity and structure the flow of the
mathematical argument throughout the paper.
All the notations used are pertinent to the com-
prehension of the paper.

2.1 Centrality measures

The authors then formally define centrality to
be a function C(x) such that a numerical value
can be assigned to any vertex x. For any two

vertices x and y, x is more important than y
if and only if C(x) > C(y). The different cen-
tralities are thus defined as follows according to
Koschützki and Schreiber.

2.1.1 Degree centrality

Degree centrality can be defined as the num-
ber of edges connected to the vertex. As the
graph is directed there exist two sub-centrality
measures called indegree and outdegree. The
authors make references to indegree and out-
degree centrality measures later in the paper,
without clearly defining them. This incoher-
ence in the argument generates gaps in the read-
ers flow of reading and should be added to a
revised edition of the paper. For general refer-
ence, indegree is the number of edges directed to
a vertex and outdegree is the number of edges
that the vertex directs to other vertices [27].
The authors add that this is a local central-
ity measure and only the neighbourhood of the
vertex of interest is taken into account. The
authors then refer to the work of Freeman [7]
in their paper, but as Freeman used degree cen-
trality in social networks and not biological sys-
tems, which is the focus of this paper, it is un-
clear why his work has been referenced. The
paper would benefit by deleting this particular
reference, as it does not contribute to the flow
of the argument.
Referring to the literature, the authors note
that Jeong et al. [12] showed that the degree of
a protein in a network correlates to its impor-
tance in the life of an organism. A much clearer
connection between centrality values through
degree centrality is shown by Hahn and Kern
[8] as the mean centrality value for essential
proteins is significantly higher than for non-
essential proteins. However it is unclear why
the authors have added these reviews in both
the introduction to graph theory part of the
paper and the main introduction, resulting in
unnecessary repetition of facts.

2.1.2 Closeness centrality

Closeness centrality relates to the sums of the
distances of the shortest paths in the network.
The authors formally define the centrality as
the reciprocal of the sum Σv∈Vdist(x, y) for x, y
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∈ V for a graph G = (V, E). The authors then
refer to the literature: Ma and Zeng [18] showed
that 8 out of 10 predicted metabolites (organic
and inorganic chemicals which are the reactants
or products of biochemical reactions [6]) by the
closeness centrality measure in E.coli metabolic
networks, were part of an important network
system in the organism. The authors thus give
a succinct and brief definition of the definition,
outlining their assumptions clearly, and their
views are supported by the appropriate litera-
ture.

2.1.3 Shortest path betweenness cen-
trality

By convention let σ(x, y) be the shortest paths
between vertices x and y. Let σx,y(v) be the
number of shortest paths through vertex v other
than x, y. The authors fail to outline their as-
sumptions for the definition of this centrality
measure. This leads to a lack of rigour in the
mathematical argument for the definition. For
completeness, we outline the assumptions: if x
= y, σ(x, y) = 1; if v ∈ x, y then σx,y(v) = 0.
Another assumption is that the quality of con-
nections is divided among all geodesics for each
pair of vertices. By convention 0/0 = 0 for this
definition [3]. Thus, the centrality is the sum
as follows: ∑

x,y∈V

σx,y(v)

σ(x, y)

The measure identifies the ability of the vertex v
to interpret communication between other ver-
tices x, y.

2.1.4 PageRank

The authors deviate from the normal trend of
defining and explaining the centrality measures;
they instead refer the reader to “the literature
for details”. It shows an unsystematic approach
to laying out the problem, and the definition be-
ing too “lengthy” is given as the reason for this
omission. A later edition should include the fol-
lowing concise definition of PageRank™[4, 22].
Assuming the web to be a directed graph G =
(V, E) where the V (vi,j ∈ V ) is the pages on
the web and E is the directed links between the
pages. Let the rank of any page vi be R(vi).
Let N be the total number of pages, M(vi) be

the set of pages linking to vi, L(vj) be the num-
ber of links from vj and the damping factor (the
probability that a user keeps selecting a random
page) is set to 0.31 after an analysis of biological
data [10]. So the rank of vi is

R(vi) =
0.69

N
+ 0.31

∑
vj∈M(vi)

R(vj)

L(vj)

2.1.5 Motif-based centrality

To understand motif-based centralities we sim-
plify the definition for motifs, for general com-
prehension. The definition given in the text
though mathematically correct, is terse and in-
comprehensible for the target audience of this
paper.

Figure 1: Motifs: Sub-graphs (here, with three
vertices) with multiple occurrences in a larger
network.

In a connected graph like Figure 1, the sub-
graphs shown in red and blue are two of the
many instances they can be observed in the
larger network. The triangular sub-graphs with
multiple occurrences in the network are mo-
tifs of the network. The authors then men-
tion a feed-forward loop and use the acronym
FFL without having defined it before the first
use; they seem to have mentioned it in the next
paragraph as an afterthought, though it is not
well-defined.
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Figure 2: (a) FFL loop to synthesise Z com-
pared to (b) a simple synthesis of Z [19].

This is indicative of a discontinuous structure of
argument and is difficult to follow as the reader
then has to search for where the acronym has
been defined in the text. For completeness, we
briefly introduce the term. A large gene reg-
ulation network can be modelled as a directed
graph. That means for the vertices correspond-
ing to the genes (g1, g2....gn), the edge directed
from gi to gj signifies a change in rate of conver-
sion of gj into a protein or other molecules [13].
Amongst all the sub-graphs with 3 vertices, the
most frequently occurring graph is the FFL.
For the diagram above (Figure 2) in (a), gene
X and gene Y both determine the production
of molecule Z; this is an FFL. In (b), gene X
and gene Y determine Z separately. This is
a simple regulation of Z. The authors go on
to describe other motif-chains such as a single
input motif (SIM) which is a set of vertices be-
ing exclusively controlled by a single vertex [28].

The authors refer to literature saying that
when the paper was written (in 2008), FFL
motifs had been studied functionally but had
not been used to rank genes. This is still valid
today as the completion of motif catalogues still
remains a priority for bridging the gap between
the ‘vertices’ in GRNs and their ‘edges’ in 2018
[11]. Another functionality study for motifs in
2017 included relating DNA mutations to spe-
cific inherited diseases where only 1 in 5 of the
genes under consideration showed certain rare
motif combinations [24]. The development of
DeepFold™in 2018, a neural network database
to obtain motif features of proteins [17], while
a comparative study, still compares the func-

tions of gene network motifs in proteins. The
authors themselves back this up saying that
Wang and Purisima [30] discovered that the
regulators with short half lives are part of the
motifs in GRNs especially in SIMs and FFLs.
This absence of literature for ranking the im-
portance of genes highlights a need to introduce
definitive ranking systems in studies in systems
biology.

3 Analysis of GRNs with
centralities

The authors analyse the centralities within the
GRN of E.coli. The authors use the data by
Salgado [25] and claim to use version 5.5 but
from review of the source, there does not seem
to be any version 5.5 as cited in the paper. This
may be a typographical error, but it is still un-
clear which version of the data i.e. 5.0 or 6.0
is used in the paper, without further analysis.
This is a serious misinterpretation of the results
and prevents any repetition of results. The re-
sulting GRN consists of 1250 vertices and 2515
edges. The authors define global regulators as
genes at a high hierarchical network within the
GRN, and suggest they may be important as
they may be able to influence genes over a larger
range. The authors propose a characterisation
of 18 such global regulators amongst the top 25
(2% of all genes) genes according to the cen-
trality measures defined in the first part of the
paper (See Appendix A: Figure 3).
The authors make general observations from
the table; they note that the centrality mea-
sures in the table can identify nearly 50% of the
global regulators within the top 2% of genes.
They add that for most of the centrality mea-
sures, the top 5 positions are occupied by global
regulators, but that specific global regulators
may occupy different positions on the list, for
different centrality measures. We note that
the gene arcA while occupying 4th position for
PageRank, occupies 18th place for shortest path
betweenness centrality. To make sure that the
centralities do not coincide, the authors use cor-
relation coefficients. This quantifies the degree
to which a variable can predict the change of
another variable, in this case, different central-
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ity measures. The authors note that for the
centralities with correlation coefficients above
0.9, close to 88% of the vertices in the original
data have an out-degree of zero i.e. no edges di-
rected out of the vertices. The authors also ob-
serve that the correlation coefficients for these
vertices are assigned to zero in the PageRank
and motif based centralities.
The authors conclude by saying that the cen-
tralities applied to the genes in the data rank
each of them differently but the motif-based
centrality rank most of the global regulators
(15 out of 18 i.e. 83%) within the top 2% of
the genes, and outperforms all other centrality
measures.

4 Analysis of the discussion

The authors consolidate their position by stat-
ing that there have been different methods to
analyse large sets of data, but that using cen-
trality measures, as they have been in other
fields, could be a step forward. Indeed, they
show a clear connection between using motif-
based centralities to identify 15 out of 18 ‘inter-
esting’ genes (global regulators) and they state
that a biological understanding is required to
analyse the results of such experiments effec-
tively. To this end, for the audience of this pa-
per, we aim to clearly define and explain bio-
logical concepts so as not to impede the flow of
argument in the critiqued paper, but explain-
ing the names and functions of the genes given
are perceived to be beyond the scope of this
article. The authors finish by mentioning that
the rankings of the genes are different when dif-
ferent measures are taken into account. They
however do not include any potential improve-
ments to their study nor do they suggest any
new methods of generalising the ranking sys-
tems. We propose that different centrality mea-
sures should be combined, and their correlation
coefficients should be plotted against existing
data to see if there is a difference in observa-
tions. This has already been done in energy
reduction studies [16] and node importance in
complex networks [31] but is yet to be seen in
systems biology.
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5 Appendix A

Figure 3: Names of the top 25 genes according to some centrality measures to find the highest
number of global regulators in the top 2% of genes. Global regulators according to Martinez-
Antonio et al. [20] are highlighted in bold. The last row gives the total global regulators for
the particular column. Abbreviations odeg: outdegree, parR: PageRank, spb: shortest path
betweenness, chains: motif-based centrality, fflA: FFL motif for certain important vertex A, fflSum:
FFL motifs in general
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