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Abstract

We try to understand the efficiency of two proposed algorithms to catch fish, and use
regression analysis, to differentiate between the two models, in this paper. This study was
motivated by an ever increasing demand of fish for a rising population in the UK. The output
of this industry to the UK economy is substantial to encourage future research into the topic.
We use regression analysis to account for standard errors in the data points obtained and
calculate the errors in the intercepts for all cases. We find that the food source algorithm (a
model which uses major food sources in an arbitrary lake as checkpoints for a gathering of a
school of fish) is a more realistic model for catching fish. We observe that the speed of the
boat explains ~ 68% of the variations in time taken to catch the fish and that the area of the
lake explains =~ 50% of the variations in time taken to catch the fish. We also propose further
study into this topic will aid the UK economy and provide a sustainable food source for
future generations.

1 Introduction

Early humans i.e. Neanderthals have had a long history of catching fish as a sustainable food source
dating back to 200,000 BC. Modern humans have been fishing since 100,000 BC [Carr, 2017]. It is
speculated that this association with fishing over the millennia led to some important inventions
and techniques to catch fish mainly the invention of fishing boats and nets. The oldest canoes used
for fishing were invented more than 7500 years ago but with the advent of the Industrial Revolution,
the process has now been mechanised. The modern fishing trawler was developed in Brixham in
the 19*" century [Marchaj, 2007]. The advent of the railways during the 1830s also led to an
increase in the demand for fish from the population inland in the UK and trawling became more
widespread [Knauss, 2005]. The development of steam trawlers in the 1880s thus marked the start
of a rapid expansion of the fishing industry that continued until the late twentieth century in the UK
[Robinson, 1996].Steam power enabled vessels to fish further offshore, for a longer duration, with
larger gear, which could reach deeper|Robinson, 1996][Trawl Net and Beam Trawl Fishing, 1885].
Fishing is still a massive industry today, contributing £980 million to the economy in exports
|[Elliot and Holden, 2017]. The UK fishing industry comprised of 4000 jobs and contributed £1.4
billion to the UK economy in terms of Gross Value Added [Ares, Rhodes and Ward, 2017]. Thus
it is clear that it is still extremely relevant to fishermen on how to catch fish efficiently, to increase
profits. The rising world population is also a major incentive for this study, it is expected to grow
from the present 7.3 billion people to about 9.7 billion by 2050 [UN-DESA, 2015]. This paper tries
to create and analyse realistic computer simulations to test two algorithms to catch fish faster and
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more efficiently and to try to show the better one of the two, through the use of statistical analysis
and a realistic approach. The aim of the paper is to show how the area of a lake, the speed of a
school of fish and the speed of the boat, changes how fast and efficiently the fish can be captured.
The two methods both revolve around understanding how fish behave. Our first preliminary model
focuses solely on how fish move and if the position is known, how fast can the fish be caught. As,
primarily, food dictates how fish move, we have simulated four main food sources in an arbitrary
lake of area A, with a school of fish modelled as a point particle with speed v, and the speed of the
boat b, and we try to find out how these parameters affect how long it takes the boat to catch the
school of fish.

2 Methodology

The three main factors which influence the motion of fish are

e Environmental parameters: A secondary use of these simulations may also be habitat assess-
ment, stream restoration, and management and conservation of fish populations [Santillana et al., 2013].
It has been observed that estuaries are composed of natural rich-structured habitats such as
mangrove forests, beaches and marshes, and that they serve as potential fish nursery areas by
provisioning shelter against predators [Beck et al., 2001]. But such habitats are difficult to
construct in simulations due to the variety of characteristics of such habitats such as spacial
and temperate conditions. Thus such parameters were also not considered in the formation
of the algorithms stated below.

e Abundance of food sources: Other secondary factors may be the size and number of shared
prey, and diet breadth [Lucas, 2000]. Dietary overlaps among fish species is also a valid
parameter, but due to simplicity of calculations and the analysis of simulations, the fish in
consideration can be thought of being a single species.

e Shelter: In water bodies with man-made structures, increased fish richness and diversity is
related to the increased availability of animals living on the seafloor, rather than using separate
shelters [Wheeler, 1980]. Thus this parameter is considered to be relatively unimportant in
the context of this paper, as a lake is more than likely to have man-made structures, such as
jetties. As the computer simulations are 2D it is impossible to ascertain how deep the fish
are in relation to the boat, so is not considered.

The motion of waves in 2D simulations is an exciting parameter to consider to see whether it influ-
ences the motion of fish, but recent studies show that there is no influence of water flow regime on
school swimming behaviour [Nadler et al., 2018] i.e. the waves created in lakes would not theoreti-
cally have an impact on the motion of the school of fish.

The first method taken into consideration is the preliminary method, where we assume that the
boat and the fish start at random points in the lake each time. We assume that the boat travels in a
straight line. We assume that the fish travel in straight lines with turns in random directions. This
assumption is backed by the fact that study into effects of fluid dynamics using virtual fish moving
in two dimensions, has shown that the fish show four distinct modes of collective motion, one of
which is ’aligned swimming with frequent spontaneous turns’ [Filella et al., 2018]. We assume that
that the boat and the school of fish can be treated as point particles. This is mainly to simplify
the modelling but also as theoretical models often assume that each fish follows some simple ’local’
rules, such as aligning themselves with the average orientation of those nearby [Couzin et al., 2002].
This effects cohesion within the school of fish and allows it to be modelled as a particle. We then
assume that the position of the fish is known to the boat. The DIDSON is a multibeam sonar



that uses an acoustic lens to form the individual beams [Belcher, Hanot and Burch, 2002]. The
DIDSON has been established as an instrument platform for observing and enumerating the pas-
sage of fish in water bodies [Handegard and Williams, 2008]. At the moment, the methods used to
determine the movement of fish include video software analysis, marker positioning based on radio
and acoustics, accelerator trajectory analysis, or manual counting [Castro-Santos and Haro, 2010]
[Watanabe et al., 2012]. Thus, it is clear that there is technology in place to locate fish using cer-
tain techniques. So the assumption that the fish can be tracked whilst moving randomly, can be
considered to be valid. The units of length and time are pixels and seconds respectively. The aim
of this model is to collect and plot data with the area of the lake, the speed of the boat and the
fish being independent variables and the time taken to catch them being the dependent variable.
A calculated line of regression will show the best fit of the data points, and the units can be then
changed into metres per second and compared to real world values of speeds of boats and the school
of fish.

The second method taken into consideration in this paper is the modelling of food sources in
the lake as potential headings of a school of fish. We assume at each iteration of the simulation that
the boat and the fish start at random points in the lake. As it has been well established that birds
in a flock find food faster and more efficiently [Krebs et al., 1972], we can assume that a school of
fish also have such an advantage [Curio, 1976]. We infer that the school of fish, modelled as a point
particle, then head straight towards the nearest of the food sources. Among the first mathematical
results concerning fish-like swimming linearly through simulations were those reported by Lighthill
[Lighthill, 1960]. Yet it has also been observed that state-of-the-art technologies cannot keep correct
identities for long term when tracking many objects [Xu and Cheng, 2017]. So the fish swimming
linearly can be taken to be a good modelling technique in the problem and the assumption that the
boat cannot see the fish can be considered to be equally valid as compared to the approach used in
the first model. We also assume that the initial and any subsequent trajectories the fish might take
are completely unknown to the boat. This makes the simulation more realistic. The boat starts at
an arbitrary food source and loops through the four food sources until the school of fish and the
boat reach the same food source i.e. they collide. Similar units of length and time are used.

Both the models mentioned above use programs written in Python using the graphics module,
to simulate the fish tracking. The use of Python was to maintain focus on the main functionality
of the simulation by taking care of the easier tasks and breaks a requirement into smaller pieces,
which are then easily executed. The simple syntax in Python helps keep the code readable.

There are many studies which can determine the biomass in a lake [Selin and Hakkari, 1982]
[Samarasin et al., 2015 [Trifonova, 2015] but none that can generalise these results to any lake
with area A. This is due to various other parameters such as the differences intensity of sunlight
for various geographical locations, and the seasonal temperature variations during the year. Thus,
to focus primarily on the area of the lake, the speeds of the boat and the fish and how they affect
the time taken to catch the fish, the above parameters and thus the total biomass in the lake will
be kept constant. We assume that there are a constant number of major food sources in any lake
at any given time. This is backed by the fact that ecological differences between species are not
enough to outweigh the effect of seasonal variations in resource abundance |[Heng et al., 2018]. So,
our assumptions can be generalised for any species of fish without affecting the results of the sim-
ulations drastically.

We will expect certain logical trends in the data such as there being a positive linear relation
in the increase in area of the lake and the time taken to catch the fish, as there will be a bigger lake
for the fish to evade capture. There will also be a negative linear relation between the speed of the



boat and the time taken to catch the fish, as a faster boat will catch the fish faster. The graphics
module works so that the highest value of the speed gives the slower speed for the particle. We
expect there to be a negative linear relation as the true equation will be a reflection in y = x.

3 Pseudo-code for the algorithms

The first model’s program differs through the lack of use of food sources and will setup turtles for
the boat and the fish. When the program starts, a timer starts as well. If the fish and the boat
collide then the terminal prints ”fish caught”, the timer ends and prints the time elapsed.

initialise the index_counter to zero

while index_counter <= 10
set width and height of the lake
set a delay time variable for 100
setup window where the simulation will take place

setup the boat as a particle
set the boat speed

setup the school of fish as a particle
set the speed of the fish

// the centre of the simulation window contains the centre of the coordinate axes
used in this program
set x_coords and y_coords to be half the size of the width and height of the lake

// this program written in python used random.randint to generate random integers
within a given range.

// find random positions for the fish and the boat.

set positions of the boat and the fish randomly using random integers in the range
between the x_coords and y_coords

setup the positions of the boat and the fish

define distance_between_points(distance between x_coords, distance between y_coords)
return square root(distance between x_coords”2 + distance between y_coords~2)

define collision_between_points(distance between x_coords, distance between y_coords)
return absolute value(distance between x_coords < 1 and distance between y_coords < 1)

define end_timer
set begin_time to when the simulation starts
set end_time to when the simulation ends
elapsed_time = end_time - begin_time

// fish’s motion is random
define random_motion_of_fish
set fish speed
call function boat_to_fish



initialise counter to zero

while counter <= 20000:
set fish heading using random integers in the range of 0 to 360
set fish trajectory by setting random integers as trajectory
lengths from -50 to 50 pixels
set fish speed

counter = counter + 1

define boat_to_fish

set heading of the boat towards the position of the fish

set boat trajectory

if collision_between_points(boat, fish)
print "fish caught"
call function end_timer
set delay of the fish and the boat using the delay variable
initialised at the start

call function random_motion_of_fish
call function boat_to_fish

index_counter = index_counter + 1

The second model’s program differs through the use of food sources and will setup turtles for
the boat, the fish and four food sources. When the program starts, a timer starts as well. If the
fish and the boat collide then the terminal prints ”fish caught”, the timer ends and prints the time
elapsed.

initialise the index_counter to zero

while index_counter <= 10
set width and height of the lake
set a delay time variable for 100
setup window where the simulation will take place

setup the boat as a particle
set the boat speed

setup the school of fish as a particle
set the speed of the fish

setup four food sources for the fish
set the dimensions of the food sources

// the centre of the simulation window contains the centre of the coordinate axes
used in this program
set x_coords and y_coords to be half the size of the width and height of the lake

// this program written in python used random.randint to generate random integers
within a given range

set positions of the boat and the fish randomly using random integers in the range
between the x_coords and y_coords



setup the positions of the boat, the fish, and the four food sources

define distance_between_points(distance between x_coords, distance between y_coords)
return square root(distance between x_coords”2 + distance between y_coords~2)

define collision_between_points(distance between x_coords, distance between y_coords)
return absolute value(distance between x_coords < 1 and distance between y_coords < 1)

define check_shortest_path_from_fish_to_food(positions of food sources)
if distance_between_points is the least for fish to food for any food source
setheading of the fish to that particular food source

define end_timer
set begin_time to when the simulation starts
set end_time to when the simulation ends
elapsed_time = end_time - begin_time

define straight_motion_of_fish
set fish to move forward at the speed given above
call the function check_shortest_path_from_fish_to_food(foodl, food2, food3, food4)
call the function check_shortest_path_from_fish_to_food(food2, foodl, food3, food4)
call the function check_shortest_path_from_fish_to_food(food3, foodl, food2, food4)
call the function check_shortest_path_from_fish_to_food(food4, foodl, food2, food3)
set delay of the fish and the boat using the delay variable
initialised at the start

define motion_of_boat
// loop through the positions of the food sources until collision
for token_food =1
setheading of boat towards token_food
if collision_between_points(fish, boat)
print "fish caught"
print "The time elapsed is", elapsed_time
token_food = token_food + 1

// access the simulation window and call the functions
set begin_time

call function straight_motion_of_fish

call function motion_of_boat

index_counter = index_counter + 1

4 Results

Generally we observe that the results follow the predicted logical trends. Further regression analysis
is given below.

e The first algorithm:
For the data set for the area of the lake plotted against the fish capture time, the line of



regression has the equation
y=3x 10"z +12.303 (1)

The standard error in the results is 6.631. The y-intercept of the graph is 12.303. The ex-
pected value of the y-intercept is zero (and all y-intercepts for positive linear relations), but
this value can be explained by the fact that the delay in the simulations (see the delay variable
mentioned in the pseudo-code) was not considered in the calculations. The standard error
in the calculation of the y-intercept is 2.256. The R squared value is 0.586 which indicates
that the area of the lake explains nearly a 59% of the variation in time taken to catch the fish.

y = 3E-05x +12.305
squarevalue=0.5862
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Figure 1: The area of the lake plotted against the time taken to catch the fish as seen using the first
algorithm and keeping the values for the speeds of the boat and the fish constant

For the data set for the speed of the boat plotted against the fish capture time, the line
of regression has the equation
y = 5.630x + 56.085 (2)

The standard error in the results is 12.348. The y-intercept of the graph is 56.085. The stan-
dard error in the calculation of the y-intercept is 6.768. The R squared value is 0.510 which
indicates that the speed of the boat explains 51% of the variation in time taken to catch the
fish.

For the data set for the speed of the fish plotted against the fish capture time, the line
of regression has the equation
y = —8.059x + 56.467 (3)

But this equation needs to be reflected in y = x for reasons mentioned in the methodology.
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Figure 2: The speed of the boat plotted against the time taken to catch the fish as seen using the first
algorithm and keeping the values for the area of the lake and the speed of the fish constant

Thus the true equation is
y = —0.1242 + 7.006 (4)

The standard error in the results is 1.120. The y-intercept of the graph is 6.411. The standard
error in the calculation of the y-intercept is 6.768. The R squared value is 0.750 which in-
dicates that the speed of the fish explains 75% of the variation in time taken to catch the fish.

e The second algorithm:
For the data set for the area of the lake plotted against the fish capture time, the line of
regression has the equation
y=5x 10"z +19.046 (5)

The standard error in the results is 12.943. The y-intercept of the graph is 19.046. The
expected value of the y-intercept is zero (and all y-intercepts for positive linear relations), but
this value can be explained by the fact that the delay in the simulations (see the delay variable
mentioned in the pseudo-code) was not considered in the calculations. The standard error
in the calculation of the y-intercept is 4.404. The R squared value is 0.497 which indicates
that the area of the lake explains nearly a 50% of the variation in time taken to catch the fish.

For the data set for the speed of the boat plotted against the fish capture time, the line
of regression has the equation
y = —4.5203z + 43.171 (6)

The standard error in the results is 6.998. The y-intercept of the graph is 43.171. The stan-
dard error in the calculation of the y-intercept is 3.836. The R squared value is 0.677 which

indicates that the speed of the boat explains ~ 68% of the variation in time taken to catch
the fish.
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Figure 3: The speed of the fish plotted against the time taken to catch the fish as seen using the first
algorithm and keeping the values for the area of the lake and the speed of the boat constant
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Figure 4: The area of the lake plotted against the time taken to catch the fish as seen wusing the first
algorithm and keeping the values for the speeds of the boat and the fish constant

For the data set for the speed of the fish plotted against the fish capture time, the line
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Figure 5: The speed of the boat plotted against the time taken to catch the fish as seen using the first
algorithm and keeping the values for the area of the lake and the speed of the fish constant

of regression has the equation
y = —2.061z 4 87.376 (7)

But this equation needs to be reflected in y = x for reasons mentioned in the methodology.
Thus the true equation is
y = —0.485z + 42.391 (8)

The standard error in the results is 2.222. The y-intercept of the graph is 42.391. The
standard error in the calculation of the y-intercept is 6.768. The R squared value is 0.016

which indicates that the speed of the fish explains ~ 2% of the variation in time taken to
catch the fish.

5 Discussion

Through careful analysis of the results, we observe that with an increase in the fish and boat speeds,
it is more and more difficult to collect data (see Figure and Figure|3) where the data points lie on
the x-axis; indicates that it takes too long for the simulation to occur and so the data points were
not considered). A limitation of the model is that we assume the boat and the fish to have constant
velocity and thus no acceleration. This reduces the realism of both models. Another limitation of
this experiment is thus the oversight of considering these points as potential outliers, but they have
been kept in to show the general trend of the data, and to pick up flaws in the original design of the
program. Yet, the first algorithm consistently gives a higher value for R squared, which indicates a
better fit for the data points. The standard errors in the results are evenly distributed with 12.348
and 12.943, the largest errors for the boat-time plot for the first algorithm and the area-time plot
for the second algorithm respectively. The second algorithm, in retrospect, has an abnormally low
value for the R squared value for the speed of the fish plotted against the fish capture time (see
Figure E[) Thus, the first algorithm is statistically a better fit for the data points, but taking a
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Figure 6: The speed of the fish plotted against the time taken to catch the fish as seen using the first
algorithm and keeping the values for the area of the lake and the speed of the boat constant

more realistic approach, the second model corresponds the closest to how fishermen used to hunt
for fish without the use of technology. There is a dearth of information on how fishermen track fish,
as most sources suggest a knowledge of the sea and educated guesses tend to help fishermen and
our analysis suggests a need to explicitly consider the role of environmental parameters and how
different amounts and sizes of food sources can affect the fish capture time. Using Typography and
Digital Imaging Units, we can convert from pixels to metres (1 metre = 3779.52755905511 pixels)
and the equations stated above can be used to extrapolate for different lake sizes, and speeds of
fish and boats. As the technology to track fish in real time is still not readily available, the second
algorithm is the better one of the two to catch fish efficiently.

6 Conclusion

The statistical analysis leads us to believe that the first model is better than the food source model,
but it relies on live tracking of the fish. This technology is not as refined today, but it is a good
preliminary model, as it shows the expected trends of the data points. The food source model
depends on the fish going to the closest food sources, which is realistic, but it also depends on the
boat knowing the positions of all major sources in the lake, which is unlikely. This model has the
advantage of being backed by the extensive literature review which agrees that food, along with
environmental parameters and shelter is of primary concern to the survival of fish, and that food
sources are the easiest to model. In general,when the area of lake gets larger,the collisions will occur
less frequently. We assumed that the speed of boat is higher than that of the fish at the beginning.
However, when we observed the simulations, the boat still caught the fish even with lower speeds.
In addition to improving the code to eliminate the bias, when the sample is large enough, recording
unsuccessful data can be used to find a probability distribution function which will facilitate the
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statistical analysis for the study.

References

[Ares, Rhodes and Ward, 2017] Ares, E., Rhodes, C. and Ward, M. (2017). The
UK Fishing Industry. [online] Researchbriefings.files.parliament.uk. Available at:
http://researchbriefings.files.parliament.uk /documents/CDP-2017-0256 / CDP-2017-0256.pdf
[Accessed 28 Mar. 2019].

[Beck et al., 2001] Beck, M.W., Heck, K.L. Jr, Able, K.W., Childers, D.L., Eggleston, D.B., Gillan-
ders, B., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. and
Weinstein, M.P. (2001) The identification, conservation, and management of estuarine and
marine nurseries for fish and invertebrates. BioScience 51, 633641.

[Belcher, Hanot and Burch, 2002] Belcher, E., Hanot, W. and Burch, J. (2002). Dual-Frequency
Identification Sonar (DIDSON). Proceedings of the 2002 Interntional Symposium on Under-
water Technology (Cat. No.02EX556), 4.47.15, p.44.

[Carr, 2017] Carr, K.E. (2017) History of fishing fishing nets, shellfish, boats. Quatr.us Study
Guides. Web. March 26, 2019.

[Castro-Santos and Haro, 2010] Castro-Santos, T., Haro, A. (2010). Fish guidance and passage at
barriers. In Fish locomotion: An eco-ethological perspective (pp. 6289). Enfield, NH: Science
Publishers.

[Couzin et al., 2002] Couzin, L., Krause, J., James, R., Ruxton, G. and Franks, N. (2002). Collective
Memory and Spatial Sorting in Animal Groups. Journal of Theoretical Biology, 218(1), pp.1-11.

[Curio, 1976] Curio E (1976) The economics of insect sociality. In: Krebs JR, Davies NB (eds)
Behavioural ecology. Blackwell, Oxford, pp 97128

[Duarte et al., 1986] Duarte, C., Kalff, J. and Peters, R. (1986). Patterns in Biomass and Cover of
Aquatic Macrophytes in Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 43(10),
pp-1900-1908.

[Elliot and Holden, 2017] Elliott, M. and Holden, J. (2017). UK Sea  Fish-
eries  Statistics  2017. [online] Assets.publishing.service.gov.uk. Available  at:
https://assets.publishing.service.gov.uk /government /uploads/system/uploads/attachment
data/file/742793 /UK SeaFisheries4 Statistics2017.pdf [Accessed 28 Mar. 2019].

[Filella et al., 2018] Filella, A., Nadal, F., Sire, C., Kanso, E. and Eloy, C. (2018). Model of Col-
lective Fish Behavior with Hydrodynamic Interactions. Physical Review Letters, 120(19).

[Handegard and Williams, 2008] Handegard, N. and Williams, K. (2008). Automated tracking of
fish in trawls using the DIDSON (Dual frequency IDentification SONar). ICES Journal of
Marine Science, 65(4), pp.636-644.

[Heng et al., 2018] Heng, K., Chevalier, M., Lek, S. and Laffaille, P. (2018). Seasonal variations
in diet composition, diet breadth and dietary overlap between three commercially important
fish species within a flood-pulse system: The Tonle Sap Lake (Cambodia). PLOS ONE, 13(6),
p.0108848.

[Knauss, 2005] Knauss, J. A. (2005) The growth of British fisheries during the industrial revolution.
Ocean Dev. Int. Law 36, 1-11.

12



[Krebs et al., 1972] Krebs JR, MacRoberts MH, Cullen JM (1972) Flocking and feeding in the
Great Tit, Parus majoran experimental study. Ibis 114:507530

[Lighthill, 1960] Lighthill, M. (1960). Note on the swimming of slender fish. Journal of Fluid Me-
chanics, 9(02), p.305.

[Lucas, 2000] Lucas, M. (2000). The influence of environmental factors on movements of lowland-
river fish in the Yorkshire Ouse system. Science of The Total Environment, 251-252, pp.223-232.

[Marchaj, 2007] Marchaj, C. (2007). Seaworthiness. London: Adlard Coles Nautical.

[Nadler et al., 2018] Nadler, L., Killen, S., Domenici, P. and McCormick, M. (2018). Role of water
flow regime in the swimming behaviour and escape performance of a schooling fish. Biology
Open, 7(10), p.bio031997.

[Robinson, 1996] Robinson, R. (1996). Trawling : The Rise and Fall of the British Trawl Fishery.
University of Exeter Press.

[Samarasin et al., 2015] Samarasin, P., Minns, C., Shuter, B., Tonn, W. and Rennie, M. (2015).
Corrigendum: Fish diversity and biomass in northern Canadian lakes: northern lakes are more
diverse and have greater biomass than expected based on speciesenergy theory. Canadian
Journal of Fisheries and Aquatic Sciences, 72(12), pp.1923.

[Santillana et al., 2013] Santillana, M., Vega-Cendejas, M. and Norris, S. (2013). Habitat charac-
teristics and environmental parameters influencing fish assemblages of karstic pools in southern
Mexico. Neotropical Ichthyology, 11(4), pp.859-870.

[Selin and Hakkari, 1982] Selin, P. and Hakkari, L. (1982). The diversity, biomass and production
of zooplankton in Lake Inarijrvi. Hydrobiologia, 86(1-2), pp.55-59.

[Trawl Net and Beam Trawl Fishing, 1885] Trawl Net and Beam Trawl Fishing: Report of the
Commissioners, with Minutes of Evidence and Appendix. (1885). London: Eyre and Spot-
tiswoode.

[Trifonova, 2015] Trifonova, I. (1998). Phytoplankton composition and biomass structure in relation
to trophic gradient in some temperate and subarctic lakes of north-western Russia and the
Prebaltic. Hydrobiologia, 369/370(0), pp.99-108.

[UN-DESA, 2015] UN-DESA. (2009). World population projected to reach 9.7 billion by 2050. Press
release 29 Jul, 2015. See https://www.un.org/en/development/desa/news/population/2015-
report.html

[Wang et al., 2015] Wang, J., Liu, J. and Liu, T. (2015). The difference in effective light penetra-
tion may explain the superiority in photosynthetic efficiency of attached cultivation over the
conventional open pond for microalgae. Biotechnology for Biofuels, 8(1).

[Watanabe et al., 2012] Watanabe, Y., Wei, Q., Du, H., Li, L. and Miyazaki, N. (2012). Swimming
behavior of Chinese sturgeon in natural habitat as compared to that in a deep reservoir: prelim-
inary evidence for anthropogenic impacts. Environmental Biology of Fishes, 96(1), pp.123-130.

[Wheeler, 1980] Wheeler, A. (1980). Fishalgal relations in temperate waters. The Shore Environ-
ment, volume 2, Systematics Association Special, 17 (b), pp. 677-698.

[Xu and Cheng, 2017] Xu, Z. and Cheng, X. (2017). Zebrafish tracking using convolutional neural
networks. Scientific Reports, 7(1).

13



	Introduction
	Methodology
	Pseudo-code for the algorithms
	Results
	Discussion
	Conclusion

