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Introduction & motivation

= Networks of interacting agents are a key tool to model social phenomena.
= Fundamental applications to business and marketing decision making processes.

= Pioneered by the work by Watts and Strogatz [1] which shows common features in
neural networks in worms, power grid networks and film actor networks.

= Uses in analysing the diffusion of innovations in social networks.

= Can local interaction between neighboring agents convince the population to conform
to single opinions?

= How fast is the process of convincing the entire population?

= Depends on the method of agent interactions.

'b ' t 1 k [1] Watts, Duncan J., and Steven H. Strogatz. "Collective
r].S O . aC .U dynamics of ‘small-world’networks." Nature 393.6684
(1998): 440-442.



Proposed algorithm for opinion
convergence

Voter algorithm

= Node in the network adopts the same behaviour as one of its randomly chosen
neighbours.

= Original algorithm proposed in [2] but assumed that there are only two possible
behaviours to adopt.

= Original contribution by authors: Do not make this assumption and allow all nodes to
have different opinions initially.

Author assumptions:

» Finite number of nodes in the network

= The graph under consideration is strongly connected i.e. there is always a path between
any 2 nodes.

bflStOl aC uk [2] Liggett, Thomas M. “The Voter Model”. Interacting

Particle Systems. Springer, Berlin, Heidelberg, (2005).
264-314.



General voter model setup

= Each node schedules the update of its own opinion through a Poisson
process where A = 1.

= Evolution of system tracked using discrete index k.

= [nitially all nodes have different opinions, so each node assigned a
different colour. S = {1, 2,3 ... N} where N is the number of nodes.

= The state of a node is indicated by c¢;[k] where i is the node index, at
iteration k with unique colour c.

= The original voter model is a special case of the current model as S =
{1,2}.
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Graph theory terminology

= Consider an undirected simple graph G = (v, €) U, set of nodes; &,
setof edges

= Degree of node i (d;), 1s the cardinality of the set of neighbours, N; of each
nodei € V

= Degree matrix D is where D;; = d;.

= Adjacency matrix A where A; ; = A;; = 1 1f link exists between nodes i, j.
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Reaching agreement
= nitially at iteration k = 0, all nodes have different opinions.

= Number of neighbours of node i coloured with c at iteration k is given by

Qi,c [k]
= The updating rule: .
alk+1=X  X~— > Qulkls(x—0)
b eef1,2..\}

= At each iteration, node i copies the opinion of one of its neighbours
uniformly at random.

1
alk+1=x X~ 2 5(x — ¢;[k])
JEN;
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Convergence properties

u EVOlutiOH Of the System in tlme Voter algorithm for multiple node values for 1000 simulations
depends on a random update process.
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Simulating the voter algorithm on a random
graph

= Create a random strongly connected
graph G = (v, &) wherev = 15,¢ =
30 with all nodes initially coloured
differently.

= This graph required 134 updates for
convergence.
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Coalescing random walks

= [nitially at ¢ = 0, there exists a hypothetical particle at each vertex on (.

= Each particle jumps onto a neighbour independently according to a
Poisson process with rate 1.

= When two or more particles meet at a node, they coalesce and form a
single particle. This 1s a representation of multiple opinions converging to
one opinion.

= These particles form a single random walk on G.

= Convergence of time of the voter model to a consensus and the
convergence time of a coalescing random walk to a single particle has the
same distribution.
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Upper bound of convergence time for a
coalescing random walk on G

= Let expected upper bound for convergence for a coalescing random walk be

E[Tcrwl
= Let mean hitting time for a random walk initialised at i and ending at j be E;[T;].

Lemma 1

E[T:rw] < eln(N + 2) max E;[T;]
L,j

Lemma 2

Vkj  VkjVki
= 2Je] Z = € )
=1 Ak(D 2ap72) i /DjDs
1 1
Where v}, and A are the eigenvector and eigenvalue of D 2AD 2
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Main result

= Combining Lemmas 1 and 2, let E[T,,.,,] = E[T] (duality):

1 1
= The symmetric reduced adjacency matrix (D 2AD 2) contains information

about the probability that a random walk starting at node i will be at node
J after t timesteps. Largest eigenvalue 1; = 1.

4eIn(N + 2)|¢| 4

E[T] < T = I
1-2,(p24ap2) ’
= Cycle graph: E[T] < eN?In(N + 2)

= Star graph: E[T] < e(2N — 2) In(N + 2)
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RANDOM GRAPH: Number of simulations = 500, Number of nodes considered = 11 CYCLE GRAPH: Number of simulations: 500, Number of nodes considered: 7
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STAR GRAPH: Number of simulations: 500, Number of nodes considered: 6
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Disagreement on a network

= For the model observed earlier, the update rule always leads to consensus
of opinions.

= What would happen if this update rule was changed?

= [nstead of node i waking up and choosing a neighbour at random, suppose
the node chooses the colour/opinion with the majority in the
neighbourhood.

= Called the Label Propagation Algorithm.
cilk + 1] = arg max Q; . []
Cc
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https://github.com/vedang-joshi/ComplexNetworks
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