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Introduction & motivation

 Networks of interacting agents are a key tool to model social phenomena.
 Fundamental applications to business and marketing decision making processes.
 Pioneered by the work by Watts and Strogatz [1] which shows common features in 

neural networks in worms, power grid networks and film actor networks.
 Uses in analysing the diffusion of innovations in social networks.
 Can local interaction between neighboring agents convince the population to conform 

to single opinions?
 How fast is the process of convincing the entire population?
 Depends on the method of agent interactions.

[1] Watts, Duncan J., and Steven H. Strogatz. "Collective 
dynamics of ‘small-world’networks." Nature 393.6684 
(1998): 440-442.



Proposed algorithm for opinion 
convergence
Voter algorithm 
 Node in the network adopts the same behaviour as one of its randomly chosen 

neighbours.
 Original algorithm proposed in [2] but assumed that there are only two possible 

behaviours to adopt. 
 Original contribution by authors: Do not make this assumption and allow all nodes to 

have different opinions initially.
Author assumptions:
 Finite number of nodes in the network 
 The graph under consideration is strongly connected i.e. there is always a path between 

any 2 nodes.
[2] Liggett, Thomas M. “The Voter Model”. Interacting 
Particle Systems. Springer, Berlin, Heidelberg, (2005). 
264-314.



General voter model setup

 Each node schedules the update of its own opinion through a Poisson 
process where 𝜆𝜆 = 1. 
 Evolution of system tracked using discrete index 𝑘𝑘.
 Initially all nodes have different opinions, so each node assigned a 

different colour. 𝑆𝑆 = {1, 2, 3 …𝑁𝑁} where 𝑁𝑁 is the number of nodes. 
 The state of a node is indicated by 𝑐𝑐𝑖𝑖 𝑘𝑘 where 𝑖𝑖 is the node index, at 

iteration 𝑘𝑘 with unique colour 𝑐𝑐. 
 The original voter model is a special case of the current model as 𝑆𝑆 =

{1, 2}.



Graph theory terminology

 Consider an undirected simple graph 𝐺𝐺 = 𝜐𝜐, 𝜀𝜀 𝜐𝜐, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑠𝑠𝑠𝑠; 𝜀𝜀,
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠
 Degree of node 𝑖𝑖 (𝑛𝑛𝑖𝑖), is the cardinality of the set of neighbours, 𝑁𝑁𝑖𝑖 of each 

node i ∈ 𝑉𝑉
 Degree matrix 𝑫𝑫 is where 𝐷𝐷𝑖𝑖,𝑖𝑖 = 𝑛𝑛𝑖𝑖.
 Adjacency matrix 𝑨𝑨 where 𝐴𝐴𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑗𝑗,𝑖𝑖 = 1 if link exists between nodes 𝑖𝑖, j.



Reaching agreement
 Initially at iteration 𝑘𝑘 = 0, all nodes have different opinions.
 Number of neighbours of node 𝑖𝑖 coloured with 𝑐𝑐 at iteration 𝑘𝑘 is given by 
𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]
 The updating rule:

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = 𝑋𝑋, 𝑋𝑋~
1
𝑛𝑛𝑖𝑖

�
𝑐𝑐∈{1,2…𝑁𝑁}

𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]𝛿𝛿(𝑥𝑥 − 𝑐𝑐)

 At each iteration, node 𝑖𝑖 copies the opinion of one of its neighbours 
uniformly at random. 

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = 𝑋𝑋, 𝑋𝑋~
1
𝑛𝑛𝑖𝑖
�
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝛿𝛿(𝑥𝑥 − 𝑐𝑐𝑗𝑗[𝑘𝑘])



Convergence properties
 Evolution of the system in time 

depends on a random update process.
 Depends on the most recent update.
 Viewed as a Markov process, with 

the absorbing state achieved when 
opinions converge to a single 
opinion.
 Proof of concept involves proving a 

single sequence of 𝑁𝑁 consecutive 
updates leading to an absorbing state 
always exists.



Simulating the voter algorithm on a random 
graph
 Create a random strongly connected 

graph 𝐺𝐺 = 𝜐𝜐, 𝜀𝜀 where 𝜐𝜐 = 15, ε =
30 with all nodes initially coloured 
differently.
 This graph required 134 updates for 

convergence.






Coalescing random walks
 Initially at 𝑠𝑠 = 0, there exists a hypothetical particle at each vertex on 𝐺𝐺.
 Each particle jumps onto a neighbour independently according to a 

Poisson process with rate 1.
 When two or more particles meet at a node, they coalesce and form a 

single particle. This is a representation of multiple opinions converging to 
one opinion.
 These particles form a single random walk on 𝐺𝐺.
 Convergence of time of the voter model to a consensus and the 

convergence time of a coalescing random walk to a single particle has the 
same distribution. 



Upper bound of convergence time for a 
coalescing random walk on 𝐺𝐺

 Let expected upper bound for convergence for a coalescing random walk be 
𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐]
 Let mean hitting time for a random walk initialised at 𝑖𝑖 and ending at 𝑗𝑗 be 𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗].
Lemma 1

𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐] ≤ 𝑠𝑠ln(𝑁𝑁 + 2) max
𝑖𝑖,𝑗𝑗

𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗]

Lemma 2

𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗] = 2|ε| �
𝑘𝑘=2

𝑁𝑁
1

1 − 𝜆𝜆𝑘𝑘 𝑫𝑫−12𝑨𝑨𝑫𝑫−12
(
𝑣𝑣𝑘𝑘𝑗𝑗2

𝐷𝐷𝑗𝑗𝑗𝑗
−

𝑣𝑣𝑘𝑘𝑗𝑗𝑣𝑣𝑘𝑘𝑖𝑖
𝐷𝐷𝑗𝑗𝑗𝑗𝐷𝐷𝑖𝑖𝑖𝑖

)

Where 𝑣𝑣𝑘𝑘 and 𝜆𝜆𝑘𝑘 are the eigenvector and eigenvalue of 𝑫𝑫−12𝑨𝑨𝑫𝑫−12



Main result
 Combining Lemmas 1 and 2, let 𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐] = 𝐸𝐸 𝑇𝑇 (duality):

 The symmetric reduced adjacency matrix (𝑫𝑫−12𝑨𝑨𝑫𝑫−12) contains information 
about the probability that a random walk starting at node 𝑖𝑖 will be at node 
𝑗𝑗 after 𝑠𝑠 timesteps. Largest eigenvalue 𝜆𝜆1 = 1.

𝐸𝐸 𝑇𝑇 ≤
4𝑠𝑠 ln 𝑁𝑁 + 2 |𝜀𝜀|

1 − 𝜆𝜆2 𝑫𝑫−12𝑨𝑨𝑫𝑫−12
max
𝑗𝑗

𝐷𝐷𝑗𝑗𝑗𝑗−1

 Cycle graph: 𝐸𝐸 𝑇𝑇 ≤ 𝑠𝑠𝑁𝑁2 ln 𝑁𝑁 + 2
 Star graph: 𝐸𝐸 𝑇𝑇 ≤ 𝑠𝑠 2𝑁𝑁 − 2 ln 𝑁𝑁 + 2







Disagreement on a network

 For the model observed earlier, the update rule always leads to consensus 
of opinions.
 What would happen if this update rule was changed?
 Instead of node 𝑖𝑖 waking up and choosing a neighbour at random, suppose 

the node chooses the colour/opinion with the majority in the 
neighbourhood.
 Called the Label Propagation Algorithm.

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = arg max
𝑐𝑐

𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]








https://github.com/vedang-joshi/ComplexNetworks
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