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Introduction & motivation

 Networks of interacting agents are a key tool to model social phenomena.
 Fundamental applications to business and marketing decision making processes.
 Pioneered by the work by Watts and Strogatz [1] which shows common features in 

neural networks in worms, power grid networks and film actor networks.
 Uses in analysing the diffusion of innovations in social networks.
 Can local interaction between neighboring agents convince the population to conform 

to single opinions?
 How fast is the process of convincing the entire population?
 Depends on the method of agent interactions.

[1] Watts, Duncan J., and Steven H. Strogatz. "Collective 
dynamics of ‘small-world’networks." Nature 393.6684 
(1998): 440-442.



Proposed algorithm for opinion 
convergence
Voter algorithm 
 Node in the network adopts the same behaviour as one of its randomly chosen 

neighbours.
 Original algorithm proposed in [2] but assumed that there are only two possible 

behaviours to adopt. 
 Original contribution by authors: Do not make this assumption and allow all nodes to 

have different opinions initially.
Author assumptions:
 Finite number of nodes in the network 
 The graph under consideration is strongly connected i.e. there is always a path between 

any 2 nodes.
[2] Liggett, Thomas M. “The Voter Model”. Interacting 
Particle Systems. Springer, Berlin, Heidelberg, (2005). 
264-314.



General voter model setup

 Each node schedules the update of its own opinion through a Poisson 
process where 𝜆𝜆 = 1. 
 Evolution of system tracked using discrete index 𝑘𝑘.
 Initially all nodes have different opinions, so each node assigned a 

different colour. 𝑆𝑆 = {1, 2, 3 …𝑁𝑁} where 𝑁𝑁 is the number of nodes. 
 The state of a node is indicated by 𝑐𝑐𝑖𝑖 𝑘𝑘 where 𝑖𝑖 is the node index, at 

iteration 𝑘𝑘 with unique colour 𝑐𝑐. 
 The original voter model is a special case of the current model as 𝑆𝑆 =

{1, 2}.



Graph theory terminology

 Consider an undirected simple graph 𝐺𝐺 = 𝜐𝜐, 𝜀𝜀 𝜐𝜐, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛; 𝜀𝜀,
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 Degree of node 𝑖𝑖 (𝑑𝑑𝑖𝑖), is the cardinality of the set of neighbours, 𝑁𝑁𝑖𝑖 of each 

node i ∈ 𝑉𝑉
 Degree matrix 𝑫𝑫 is where 𝐷𝐷𝑖𝑖,𝑖𝑖 = 𝑑𝑑𝑖𝑖.
 Adjacency matrix 𝑨𝑨 where 𝐴𝐴𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑗𝑗,𝑖𝑖 = 1 if link exists between nodes 𝑖𝑖, j.



Reaching agreement
 Initially at iteration 𝑘𝑘 = 0, all nodes have different opinions.
 Number of neighbours of node 𝑖𝑖 coloured with 𝑐𝑐 at iteration 𝑘𝑘 is given by 
𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]
 The updating rule:

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = 𝑋𝑋, 𝑋𝑋~
1
𝑑𝑑𝑖𝑖

�
𝑐𝑐∈{1,2…𝑁𝑁}

𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]𝛿𝛿(𝑥𝑥 − 𝑐𝑐)

 At each iteration, node 𝑖𝑖 copies the opinion of one of its neighbours 
uniformly at random. 

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = 𝑋𝑋, 𝑋𝑋~
1
𝑑𝑑𝑖𝑖
�
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝛿𝛿(𝑥𝑥 − 𝑐𝑐𝑗𝑗[𝑘𝑘])



Convergence properties
 Evolution of the system in time 

depends on a random update process.
 Depends on the most recent update.
 Viewed as a Markov process, with 

the absorbing state achieved when 
opinions converge to a single 
opinion.
 Proof of concept involves proving a 

single sequence of 𝑁𝑁 consecutive 
updates leading to an absorbing state 
always exists.



Simulating the voter algorithm on a random 
graph
 Create a random strongly connected 

graph 𝐺𝐺 = 𝜐𝜐, 𝜀𝜀 where 𝜐𝜐 = 15, ε =
30 with all nodes initially coloured 
differently.
 This graph required 134 updates for 

convergence.






Coalescing random walks
 Initially at 𝑡𝑡 = 0, there exists a hypothetical particle at each vertex on 𝐺𝐺.
 Each particle jumps onto a neighbour independently according to a 

Poisson process with rate 1.
 When two or more particles meet at a node, they coalesce and form a 

single particle. This is a representation of multiple opinions converging to 
one opinion.
 These particles form a single random walk on 𝐺𝐺.
 Convergence of time of the voter model to a consensus and the 

convergence time of a coalescing random walk to a single particle has the 
same distribution. 



Upper bound of convergence time for a 
coalescing random walk on 𝐺𝐺

 Let expected upper bound for convergence for a coalescing random walk be 
𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐]
 Let mean hitting time for a random walk initialised at 𝑖𝑖 and ending at 𝑗𝑗 be 𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗].
Lemma 1

𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐] ≤ 𝑒𝑒ln(𝑁𝑁 + 2) max
𝑖𝑖,𝑗𝑗

𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗]

Lemma 2

𝐸𝐸𝑖𝑖[𝑇𝑇𝑗𝑗] = 2|ε| �
𝑘𝑘=2

𝑁𝑁
1

1 − 𝜆𝜆𝑘𝑘 𝑫𝑫−12𝑨𝑨𝑫𝑫−12
(
𝑣𝑣𝑘𝑘𝑘𝑘2

𝐷𝐷𝑗𝑗𝑗𝑗
−

𝑣𝑣𝑘𝑘𝑘𝑘𝑣𝑣𝑘𝑘𝑖𝑖
𝐷𝐷𝑗𝑗𝑗𝑗𝐷𝐷𝑖𝑖𝑖𝑖

)

Where 𝑣𝑣𝑘𝑘 and 𝜆𝜆𝑘𝑘 are the eigenvector and eigenvalue of 𝑫𝑫−12𝑨𝑨𝑫𝑫−12



Main result
 Combining Lemmas 1 and 2, let 𝐸𝐸[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐] = 𝐸𝐸 𝑇𝑇 (duality):

 The symmetric reduced adjacency matrix (𝑫𝑫−12𝑨𝑨𝑫𝑫−12) contains information 
about the probability that a random walk starting at node 𝑖𝑖 will be at node 
𝑗𝑗 after 𝑡𝑡 timesteps. Largest eigenvalue 𝜆𝜆1 = 1.

𝐸𝐸 𝑇𝑇 ≤
4𝑒𝑒 ln 𝑁𝑁 + 2 |𝜀𝜀|

1 − 𝜆𝜆2 𝑫𝑫−12𝑨𝑨𝑫𝑫−12
max
𝑗𝑗

𝐷𝐷𝑗𝑗𝑗𝑗−1

 Cycle graph: 𝐸𝐸 𝑇𝑇 ≤ 𝑒𝑒𝑁𝑁2 ln 𝑁𝑁 + 2
 Star graph: 𝐸𝐸 𝑇𝑇 ≤ 𝑒𝑒 2𝑁𝑁 − 2 ln 𝑁𝑁 + 2







Disagreement on a network

 For the model observed earlier, the update rule always leads to consensus 
of opinions.
 What would happen if this update rule was changed?
 Instead of node 𝑖𝑖 waking up and choosing a neighbour at random, suppose 

the node chooses the colour/opinion with the majority in the 
neighbourhood.
 Called the Label Propagation Algorithm.

𝑐𝑐𝑖𝑖 𝑘𝑘 + 1 = arg max
𝑐𝑐

𝑄𝑄𝑖𝑖,𝑐𝑐[𝑘𝑘]








https://github.com/vedang-joshi/ComplexNetworks
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