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1 Introduction
Many studies in the past decades have found that bi-
ological processes and intracellular structures (such
as genes and proteins) display oscillatory behaviour
[18]. We observe this phenomenon in heartbeats [7],
respiration [23], and cell cycles [16]. On the cellular
scale, this is evident in biochemical interactions in-
volving calcium ions. The calcium ion (Ca2+) plays
a vital role in regulating heat production and facili-
tating intracellular communication [2].

In the cell, the Ca2+ concentrations are quite low (≈
100nM) [10]. Thus, the influx of small quantities of
Ca2+ from the endoplasmic reticulum (the largest in-
tracellular store of Ca2+) (ER) into the cytosol (fluid
within the cell walls embedding the other organelles)
causes rapid and reversible changes in the Ca2+ con-
centrations. These concentration changes manifest as
oscillations. These oscillations are signalling mecha-
nisms, carried by the oscillation frequency [28]. For
instance, the oscillation frequency of Ca2+ is known
to control the contraction of pulmonary and arteriole
smooth muscles in the lungs [24] whilst increasing the
efficiency of specific gene expression and cell differen-
tiation [13]. Specific information can be encoded in
this signal and transported through the cell without
causing harm to the cell itself [4].

These oscillations are regulated by various mecha-
nisms. The most common signalling pathway works
as follows: the stimulation generated by the binding
of a ligand-receptor on the cell wall activates a par-
ticular enzyme called phospholipase-C. This enzyme
hydrolyses to create the inositol 1,4,5-trisphosphate
(InsP3) signalling molecule [22]. This InsP3 molecule
diffuses to the ER and binds to an InsP3-receptor.
This receptor gets activated and acts as a channel to
release Ca2+ from the ER into the cytosol [27] This
mechanism is known as Ca2+-induced Ca2+ release
(CICR).

Berridge et. al. [5] use this CICR mechanism to hy-
pothesise that an external stimulus triggers the syn-
thesis of a certain amount of InsP3. This, in turn,
triggers the release of a particular amount of Ca2+

from an InsP3-sensitive pool. Goldbeter et. al. [15]
use this hypothesis to develop a minimal model for
such signal-induced oscillations based on CICR. They
give a system of ODEs, whose dynamics we solve and
explore further in this paper. We first describe the bi-
ological model, as given by the authors. We then pro-
vide references to the literature, which demonstrate
the variety of approaches in modelling Ca2+ oscilla-
tions. We then simulate the model numerically and
conduct a phase plane analysis to study the dynam-

ics of this non-linear system. Finally, we conduct a
bifurcation analysis using numerical continuation of
this system of ODEs. We shall henceforth refer to
this study by Goldbeter et. al. as the ‘case study’,
with the model referred to as the ‘case study model’
for brevity.

The tool of choice for the simulation and analysis
of dynamical systems is the PyDSTools [11] tool-
box in Python. This toolbox is chosen for its low-
level integrators and continuation algorithms writ-
ten in C, Python and Fortran, making the execution
of such analyses extremely fast. The source code
for the analyses and diagrams for this paper may
be found at https://github.com/vedang-joshi/
physio_medicine_cw.

2 Biological model

Figure 1: A graphical representation of the system.
The stimulus (S) acts on the cell receptor (R). This
triggers the synthesis of InsP3. This then triggers the
release of Ca2+ in the InsP3-sensitive store (X) at a
rate proportional to the saturation function β of the
InsP3-receptor. Ca2+ in the cytosol (Z) is pumped
into an InsP3-insensitive store (Y ). Ca2+ in Y is
released into the cytosol (i.e. in Z) by a process reg-
ulated by the cytosolic Ca2+. Figure obtained from
[14].

The Goldbeter model [15] that we are considering for
further analysis is based off the CICR mechanism, as
discussed earlier. The authors are primarily investi-
gating whether the interactions between the InsP3-
sensitive and InsP3-insensitive intracellular stores of
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Ca2+ give rise to these oscillations in the Ca2+ con-
centrations in the cytosol.

To reiterate the CICR mechanism slightly, the system
is based on the synthesis of InsP3 based off an exter-
nal stimulus on a cell receptor. This synthesis triggers
the release of Ca2+ in the InsP3-sensitive store (X).
The amount of Ca2+ released is controlled by the sat-
uration function β of the InsP3-receptor. The Ca2+

in the cytosol (Z) is pumped into an InsP3-insensitive
store (Y ) and back into Z, creating a feedback loop.
It is believed that this feedback loop structure gives
rise to cytosolic Ca2+ oscillations [14]. The authors
consider the dynamics only in Z and Y by assum-
ing the release of Ca2+ in the InsP3-sensitive store to
be an adjustable parameter [14]. See Figure 2 for a
graphical representation of the problem.

Therefore the process may be modelled by the ODE
system as follows [15]:

dZ

dt
= v0 + v1β − v2 + v3 + kfY − kZ, (1)

dY

dt
= v2 − v3 − kfY, (2)

where v2 and v3 are

v2 = VM2
Zn

Kn
2 + Zn

, (3)

v3 = VM3
Y m

Km
R + Y m

Zp

Kp
A + Zp

, (4)

In equations 1 and 2, Z and Y represent the concen-
trations of free Ca2+ in the cytosol and the InsP3-
insensitive stores respectively. The parameter v0 de-
notes the constant extracellular input of Ca2+. The
parameter v1β refers to the InsP3-modulated release
of Ca2+ from the InsP3-sensitive store. The variables
v2 and v3 refer to the rate of pumping Ca2+ into
the InsP3-insensitive stores and the rate of release of
Ca2+ from that InsP3-insensitive store into the cy-
tosol. The parameter kf denotes the rate of passive
leak of Y into Z. The rate of transport of cytosolic
Ca2+ is linear, denoted by k.

The equations 3 and 4 allow for cooperativity in
pumping, release and activation of Ca2+. Here, the
parameters n, m, p refer to the Hill coefficients cat-
egorising the processes of pumping, release and acti-
vation respectively. The parameters V M2 and V M3
are the maximum values of the rates v2 and v3 re-
spectively. The parameters K2, KR and KA refer
to the threshold constants for pumping, release and
activation.

3 Related Works

There have been many mathematical models pro-
posed for Ca2+ oscillations. The case study model
assumes the existence of two pools for Ca2+ and
emphasises the effect of CICR on Ca2+ oscillations.
The model was proposed before important features of
InsP3 and Ca2+-gated channel opening were known.
The release of Ca2+ from intracellular pools may be
mediated by either the InsP3-receptor or by the ryan-
odine receptor (RyR) [21]. It was found that both
types of release channels were not required [21]. Here,
we give a historical overview of the various models
proposed for Ca2+ oscillations. We provide compar-
isons to other models in the literature for a thor-
ough understanding of the biological processes in-
volved and the progression of models over time.

Somogyi and Stucki [29] provide one of the first mod-
els for Ca2+ oscillations. They construct their model
using a CICR framework, but assume only one sin-
gle InsP3-sensitive pool exists. The authors restrict
their analysis to oscillations in liver cells. They also
restrict the passive flows of Ca2+ across the InsP3-
sensitive channel and the two Ca2+ leaks to unidi-
rectional fluxes only. This is a simplification of the
model considered subsequently by the case study.
The authors observe a mathematical similarity be-
tween the rate laws employed in their model and the
well-established Brusselator system of equations, one
of the first models capable of explaining the onset of
stable oscillations.

The De Young-Keizer model [12] is similar to the
case study model to the extent that both models are
deterministic and consider external stimulus-induced
Ca2+ oscillations. The authors construct a simpli-
fied model of the InsP3-receptor by assuming that
three independent sub-units are responsible for the
conduction of Ca2+, where each sub-unit consists of
an InsP3 and two Ca2+ binding sites. One of these
sites is for activation and the other for inhibition of
Ca2+. The case study assumes a single binding site
and reports that an important property of the case
study model is that recurrent Ca2+ oscillations may
occur in the absence of InsP3 oscillations [15]. This
directly contradicts the findings by the De Young-
Keizer model. The De Young-Keizer model shows
that sustained InsP3 oscillations are a product of a
positive feedback mechanism of Ca2+ on InsP3 pro-
duction. This mechanism produces Ca2+ oscillations.
The idea of a positive feedback mechanism of Ca2+

on InsP3 production has been verified experimentally
in many subsequent studies [30, 3]. The lack of incor-
poration of this positive feedback mechanism of Ca2+
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on InsP3 production is one of the fundamental limita-
tions of the case study model. The De Young-Keizer
model also assumes that ligands may bind to any un-
occupied site on receptor irrespective of whether the
other sites are InsP3 or Ca2+ binding sites.

Atri et. al. [1] developed a model for Ca2+ based
off a single gating system. They use a De Young-
Keizer framework for the InsP3-receptor but separate
the Ca2+ sites as positive and negative regulatory
sites (an InsP3 site, a positive and negative regula-
tory Ca2+ site). The binding of regulatory factors
(eg. ligands) is still assumed to be state indepen-
dent, as with the De Young-Keizer model. The main
assumption in the Atri model is that the negative
Ca2+ regulatory site requires a cooperative binding
of two Ca2+ to close the channel. For brevity, we do
not include the system of ODEs proposed by Atri et.
al. Instead, we provide a short review of the simi-
larities in the construction of the case study model
and the Atri et. al. model. Both models assume a
constant rate of Ca2+ influx from the exterior of the
cell into the cytosol (represented by v0 and β in the
case study and Atri models respectively). Both mod-
els also consider a constant concentration of InsP3 at
which oscillations occur. Yet, the modelling of the
Ca2+ flux in such a manner resembles a simplified
version of the De Young-Keizer model [1] and only
assumes a single pool of Ca2+, as opposed to two
pools in the case study model. Thus, the model cre-
ates a link between the models of Ca2+ which may
or may not require oscillating InsP3 to drive Ca2+

oscillations.

For all the models considered above, the limiting
process was the Ca2+ exchange with the extracel-
lular medium. Li & Rinzel [21] analysed the nine
variable De Young-Keizer model and reduce it to a
two-variable system. The authors consider the lim-
iting process here to be the InsP3-receptor desensi-
tisation. The authors analyse the time scales of the
three channel gating process (namely the InsP3 reg-
ulation, Ca2+ activation and inactivation) in this re-
vised model of the De Young-Keizer model. The au-
thors conducted a bifurcation analysis of this reduced
system and found the bifurcation diagram to be qual-
itatively identical to the one constructed using the
De Young-Keizer model. The authors compare the
reduced model to the Hodgkin-Huxley formalism for
ER membrane electrical excitability.

More recently, Lavrentovich and Hemkin [20] used
a CICR framework to model spontaneous Ca2+ os-
cillations in astrocytes. Astrocytes are a fundamen-
tal structural element holding neurons together and

play an active part in the signalling process [9]. This
model closely resembles the case study model by con-
sidering the dynamics of the Ca2+ concentration in
the ER (Y ), and the InsP3 concentration in the cell
(Z). In this model, the oscillatory behaviour is ini-
tiated by small changes in cytosolic Ca2+, caused by
varying the extracellular Ca2+ flux across the plasma
membrane into the cytosol. The two pool model qual-
itatively demonstrates the same dynamics across dif-
ferent cells, thereby validating the case study model.

To determine the exact conditions necessary for os-
cillations, intuition is insufficient. To establish a set
of requirements, a stability analysis is necessary. An
advantage of the models discussed above is that the
temporal changes can be analytically derived. We
shall discuss this further in the next section.

4 Temporal Dynamics Analysis
This section is devoted to demonstrating the influence
of the various parameters in the system, on the long-
term observed dynamics in the case study model. We
start by reproducing the plot for the temporal dy-
namics in [14] (see Figure 2). We observe sustained
oscillations in cytosolic Ca2+ with a period of the or-
der 1. We shall vary certain parameters in the case
study system of ODEs, whilst also providing some
reasoning as to why and how a particular parameter
was chosen and varied.
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Figure 2: Oscillations in cytosolic Ca2+. Reproduc-
tion of Figure 2 in [14]. Curves obtained by numerical
integration of the equations 1 and 2, using the follow-
ing parameter values: v0 = 1µMs−1, k = 10s−1,
kf = 1s−1, v1 = 7.3µMs−1, V M2 = 65µMs−1,
V M3 = 500µMs−1, K2 = 1µM , KR = 2µM ,
KA = 0.9µM , m = n = 2, p = 4, β = 0.301. Initial
conditions: Z = 0µM, Y = 0µM .
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Figure 3: Change in period of oscillations in cytosolic
Ca2+ by varying v0. The top figure is a reproduction
of Figure 2, with the next three figures showing in-
cremental variations in v0. v0 = 1, 2, 3, 5µMs−1 re-
spectively for the four figures (from top to bottom
panels). The rest of the system parameter values are
as given in Figure 2.

We know that histamine (nitrogenous compound in-
volved localised immune system responses) causes the
influx of Ca2+ via voltage-gated calcium channels in
certain cell membranes [25]. It has been demon-
strated that low doses of histamine causes repeti-
tive spikes in Ca2+, whereas higher does of histamine
cause a maintained high level of Ca2+ [17]. This in-
dicates that varying the levels of external Ca2+ (v0)
would result in fundamental characteristic changes in
the dynamics of the case study system of ODEs. To
this end, we keep the other parameter values con-
stant as seen in Figure 2 and only vary v0 (see Figure
3). We observe that there is a threshold value for
v0 3µMs−1 < v0 < 5µMs−1 where sustained oscil-
lations cease to exist. Only a maintained constant
level of cytosolic Ca2+ is observed. These observa-
tions are consistent with the claim by Jacob et. al.
[17] as mentioned before. We may conclude that the
external influx of Ca2+ is one of the key parameters

in driving CICR based oscillations.
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Figure 4: Change in period of oscillations in cytosolic
Ca2+ by varying β. The top figure is a reproduction
of Figure 2, with the next four figures showing slight
variations in β. β = 0.301, 0, 0.201, 0.601, 0.801 re-
spectively for the five figures (from top to bottom
panels). The rest of the system parameter values are
as given in Figure 2.

When the case study model was published, a widely
held view was that Ca2+ oscillations are driven only
by InsP3 oscillations. This claim was proposed, in
part, due to the fact that InsP3 controls a constant
flow of Ca2+ into the cytosol regulated by the rate β.
We reproduce the results from the case study [14] and
back up the authors’ views that there exist a range
of rate values 0.201 < β < 0.801 (a stricter bound-
ing 0.291 < β < 0.775 is given in [14]), where Ca2+

oscillations occur (see Figure 4). The authors in the
case study also remark that the constant input from
InsP3-sensitive Ca2+ stores cannot be replenished for
all time, so reducing the β parameter to zero should
theoretically suppress all oscillations. We show this
to be the case by setting β = 0 (see the second panel
from the top in Figure 4). This indicates that the
constant input of Ca2+ into the cytosol triggered by
the external signal, forms part of a key driving mech-
anism for Ca2+ cytosolic oscillations.
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The influence of the above two variables (i.e. v0
and β) were considered by the authors in the case
study, and we successfully reproduced and qualita-
tively backed the authors’ claims of the processes sur-
rounding Ca2+ cytosolic oscillations. Yet, the obvi-
ous influence of the intracellular pumping and Ca2+

release (governed by V M2 and V M3) has not been
talked about at all in the case study.

We aim to fill this gap in the analysis here. We vary
the maximum rate of Ca2+ pumping in intracellu-
lar store (V M2) and obtain bounds between which
sustained oscillations of cytosolic Ca2+ may be ob-
served. We find that sustained oscillations exist
for the parameter values given in Figure 2, for 59
µMs−1 < V M2 < 145 µMs−1 (see Figure 5). A
steady state is reached for values of V M2 outside this
range. We note that for 59 µMs−1 < V M2 < 145
µMs−1, there appears to be a linear relationship be-
tween the maximum Z amplitude and the values of
V M2. So, for higher values of V M2, we see higher
amplitudes, resulting in a theoretical increase in the
energy of the system. We also observe that the in-
crease of V M2 results in an increase in the frequency
of oscillations.
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Figure 5: Amplitude of cytosolic Ca2+ oscillations
as a function of V M2. For the values of the other
parameters given in Figure 2, sustained Ca2+ oscil-
lations are observed when 59 µMs−1 < V M2 < 145
µMs−1. Points in red denote the maximum value of
the trajectories obtained by numerical integration of
Equations 1 and 2.
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Figure 6: Amplitude of cytosolic Ca2+ oscillations
as a function of V M2. For the values of the other
parameters given in Figure 2, sustained Ca2+ oscilla-
tions are observed when 438 µMs−1 < V M3 < 8450
µMs−1. Points in red denote the maximum value of
the trajectories obtained by numerical integration of
Equations 1 and 2.

We conduct a similar analysis for the maximum rate
of Ca2+ release in the intracellular store (V M3), and
find that sustained oscillations exist for the param-
eter values as given in Figure 2, for 438 µMs−1 <
V M3 < 8450 µMs−1 (see Figure 6). A steady state
is reached for values of V M3 outside this range with
oscillations in finite time, and then plateauing of the
trajectories occurs.

5 Phase plane analysis

For most non-linear systems, it is impossible to find
closed analytical solutions due to the influence of
small changes of system parameters on the system dy-
namics. This necessitates the development of phase
plane diagrams to determine qualitative features of
the non-linear system. The approach here is largely
pictorial, which helps visualise the behaviour of the
system easily. From ideas in vector calculus, we know
that every point (x, y) in the solution plane can be
assigned a vector which does not change with time. A
solution curve passing through (x, y) must have these
zero time derivative vectors as its tangents. A collec-
tion of these vectors defines a vector field, and is used
to qualitatively sketch a family of solution curves to
the ODE system.

Instead of choosing arbitrary points for which to plot
these zero derivative vectors, we compute the locus of
points where the first time derivative of the system
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of ODEs is zero (i.e. in the case study model, where
Ż = Ẏ = 0). The set of points satisfying these re-
spective rules is termed a nullcline (specifically Z and
Y nullclines respectively in our case study model).
Nullclines, therefore, separate the phase plane into
regions of same-direction flow. At the intersection
of these nullclines, the time derivative is zero in all
directions in the plane and the system achieves equi-
librium. From numerical integration of the Z and Y
variables, we see that the trajectories settle to self-
sustained oscillations for the parameter values given
(see Figure 2 for reference). The occurrence of sus-
tained oscillations requires a stable limit cycle in the
system. A limit cycle is a closed trajectory in the
phase space where states are visited and re-visited,
repetitively. The existence of an equilibrium point
within a limit cycle demonstrates the stability of the
system.
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Figure 7: Phase plane diagram. The black triangle
denotes the fixed point. The solid lines in blue and
green denote the Z and Y nullclines respectively. The
solid red line denotes the limit cycle generated from
the trajectories obtained by numerical integration of
Equations 1 and 2 for the parameter values given in
Figure 2.

We shall also consider varying the parameters as
shown in Section 4, within the individual ranges
where sustained oscillations have been observed. We
will use the results obtained by the case study au-
thors along with our own analysis to determine the
new parameter set values. We will show that a new
set of parameters may not demonstrate oscillations,
even if certain parameter values may demonstrate os-
cillations in the system individually. We will thus aim
to highlight the non-trivial dynamics in this system
of ODEs through a phase plane framework.

We compute the nullclines for the case study model
for the parameter values as given in Figure 2, and also
plot the equilibrium point which exists at (Z = 0.32
(2 d.p), Y = 2.04 (2 d.p)). We demonstrate the exis-
tence of a limit cycle and that the equilibrium point
lies at the intersection of the nullclines within the
limit cycle (see Figure 7), thus confirming the stabil-
ity of the system. This also gives qualitative back-
ing to the self-sustained oscillations observed in plot-
ting the trajectories of Z and Y in finite time. By
commencing the trajectory plots from the origin of
the (Z, Y ) phase space, we see that the trajectories
keep visiting and revisiting the same neighbourhood
around the equilibrium. We compute the eigenvalues
of the Jacobian at this point and so we can charac-
terise this equilibrium point as a stable centre.
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Figure 8: Phase plane diagram. The black triangle
denotes the fixed point. The solid lines in blue and
green denote the Z and Y nullclines respectively. The
solid red line denotes the trajectories obtained by nu-
merical integration of Equations 1 and 2 for the pa-
rameter values v0 = 3 µMs−1, β = 0.601, V M2 = 120
µMs−1 and V M3 = 700 µMs−1 and the other param-
eter values as given in Figure 2.

We perturb the system for the parameters v0, β, V M2
and V M3, for values in the range, 1 µMs−1 < v0 < 5
µMs−1, 0.291 < β < 0.775, 59 µMs−1 < V M2 < 145
µMs−1, 59 µMs−1 < V M3 < 145 µMs−1. All pa-
rameters which were individually perturbed within
these ranges have resulted in sustained oscillations
being observed. We compute the fixed point for this
new system to be (Z = 0.74 (2 d.p), Y = 0.97 (2
d.p)). Through computing the eigenvalues for the
Jacobian for this new system, we discover that the
slight perturbations result in the system exhibiting
an asymptotically stable spiral. Importantly, the loss
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of the limit cycle suggests that sustained oscillations
can no longer be observed in the new system. Figure
8 shows this system with v0 = 3 µMs−1, β = 0.601,
V M2 = 120 µMs−1 and V M3 = 700 µMs−1, with all
other parameters kept the same as in Figure 2.

Through this phase portrait, we show that initially a
small rise in the influx of free cytosolic Ca2+ results
in a sharp rise in InsP3-insensitive stores, but, with
continuous rises in cytosolic Ca2+, there is a grad-
ual decline of InsP3-sensitive stores until the system
starts to spiral around a stable attractor at the equi-
librium point (i.e. the system starts to oscillate with
a high frequency around an equilibrium). We also
note the clockwise direction of rotation of the system
from both phase plane diagrams.

To present a complete analysis of system behaviour,
we consider perturbing the system for the other pa-
rameters K2, KR and KA which influence the equa-
tions 3 and 4 - i.e. the cooperativity equations for the
pumping, release and activation of Ca2+. We vary
these parameters as they are the threshold constants
for the pumping, release and activation of Ca2+, and
would provide a complete overview as to how the sys-
tem dynamics change with varying v2 and v3. We
consider a slight variation to the values of these pa-
rameters as given by the case study authors and pro-
pose new parameter values governed by physiological
experimental evidence [8]. We set K2 = 0.6 µM ,
KR = 13 µM , KA = 0.4 µM , with all other parame-
ter values as given in Figure 2, and demonstrate that
a limit cycle exists for this new set of parameters too,
with the equilibrium point lying within the cycle (see
Figure 9).

The phase plane diagram demonstrates that sus-
tained oscillations are viewed in the system, even with
large perturbation of threshold constants for the ac-
tivation, release and pumping of Ca2+. We find the
fixed point to be at (Z = 0.32 (2 d.p), Y = 3.67 (2
d.p)), and, as the limit cycle is formed around this
fixed point, we characterise this equilibrium point
as stable. On comparing the Figures 8 and 9, we
note that the change in the threshold constants al-
lows the system to converge to the equilibrium state
faster than varying the extracellular input of Ca2+,
the InsP3 regulated release of Ca2+ and the maximum
rates of equations governing the activation, release
and pumping of intracellular Ca2+. This obviously
indicates that the feedback loop of pumping and re-
lease of Ca2+ drives the system dynamics rather than
the threshold values of the pumping, activation and
release of Ca2+.
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Figure 9: Phase plane diagram. The black triangle
denotes the fixed point. The solid lines in blue and
green denote the Z and Y nullclines respectively. The
solid red line denotes the limit cycle generated from
the trajectories obtained by numerical integration of
Equations 1 and 2 for the parameter values K2 = 0.6
µM , KR = 13 µM , KA = 0.4 µM and the other
parameter values as given in Figure 2.

6 Bifurcation analysis

For a thorough analysis of the biological systems, it
is necessary to analyse the dependence of frequency
and amplitude of oscillations on certain parameters.
A simple method is to numerically integrate the sys-
tem for different parameter sets and observe the sys-
tem dynamics. This is the approach taken in the last
few sections. However if we wish to conduct such an
analysis on multiple parameters using various param-
eter values, this approach is quite tedious. A more
systematic approach is the analysis of the neighbour-
hood of bifurcations from the stable steady states,
which leads to oscillations in the system. In the last
section, we shall introduce the ideas behind bifurca-
tion analysis. We shall explore the bifurcations and
bifurcation points observed in the case study model
and explain how the dynamics of the system depend
on the β parameter i.e. the saturation function of the
InsP3 receptor.

In all models considered above, we note that the os-
cillations occur due to the existence of fast and slow
processes. To reiterate, if the Ca2+ channel is open,
then the Ca2+ release rate is faster than the pump
rate. Such oscillations are termed ‘relaxation oscilla-
tions’. Generally in relaxation oscillations, the con-
centration gradient slowly builds across the ER and
is then dissipated in a sudden discharge. The slow

7



EMATM0007 December 10, 2021

buildup is represented as the phase between spikes
and the dissipation occurs during the first part of the
spike i.e. the sharp upstroke (see the Z trajectory in
Figure 2)
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Figure 10: Bifurcation diagram of the system. The
solid line in black denotes the stable equilibrium
curve. The dotted black line denotes the unstable
equilibrium curve. The blue dots show the Hopf bi-
furcations in the system. This analysis is conducted
for the system of equations 1 and 2 for the parameter
values as given in Figure 2.
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Figure 11: Bifurcation diagram of the Z subsystem
varying β. The solid line in black denotes the sta-
ble equilibrium curve. The dotted black line denotes
the unstable equilibrium curve. The blue dots show
the Hopf bifurcations in the system. This analysis is
conducted for the system of equations 1 and 2 for the
parameter values as given in Figure 2.

Bifurcations occur if the system contains dynamics in

the neighbourhood of certain parameter values which
topologically differ from the system dynamics at these
parameter values [6]. Across the models considered so
far in the literature review (including the case study
model), the most frequent transition which leads to
self-sustained oscillations in Ca2+ is the Hopf bifur-
cation. Hopf bifurcations are solely characteristic of
non-linear systems. If the phase trajectory of a sys-
tem converges to a focus for a certain set of param-
eters, and small changes to the parameter values re-
sults in the focus converging to a closed curve, then a
Hopf bifurcation is said to have occurred. We observe
this behaviour during the phase plane analysis (see
Figures 7 and 8). Mathematically speaking, a system
undergoes a Hopf bifurcation if the fixed point in the
system loses stability as a pair of complex conjugate
eigenvalues crosses the complex imaginary axis. In
relaxation oscillations, the growth of the oscillation
amplitude in the neighbourhood of the Hopf bifurca-
tion, occurs at an extremely small parameter range
[26], which is why we study this behaviour. Let us
illustrate these ideas further.
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Figure 12: Numerical continuation of the Z subsys-
tem varying β focusing on the H1-H4 family of limit
cycles. The solid purple line denotes the maximum
and minimum values of Z on limit cycles. The red
diamond denotes the limit point of cycles bifurcation
as we track the limit cycle originated from the bifur-
cations H1 and H4.

PyDSTools contains an inbuilt Moore-Penrose nu-
merical continuation method, which we apply to the
case study model and obtain the equilibrium point
curve. We retain the original parameter values as
given in Figure 2. We identify four Hopf bifurca-
tions in the system labelled H1, H2, H3 and H4 (see
Figure 10). The solid black line shows the stable
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equilibrium curve and the dotted black line shows
the unstable equilibrium curve. We prepare the sys-
tem to start close to the steady state with β = 1,
Z = 0.5, Y = 2. We consider β to be the free pa-
rameters henceforth in our analysis. We observe that
the equilibrium loses its stability at H3, regains it
from H2 through to H1 and loses it between H1 and
H4. it is necessary to analyse what happens at each
of these individual Hopf bifurcations. This analysis
includes categorising these bifurcations as subcritical
or supercritical. Whether a Hopf bifurcation is su-
percritical or subcritical is determined by the sign of
the first Lyapunov coefficient (l1) of the dynamical
system near the equilibrium [19]. When l1 < 0, the
Hopf bifurcation is supercritical and for l1 > 0, the
Hopf bifurcation is subcritical [31].
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Figure 13: Numerical continuation of the Z subsys-
tem varying β focusing on the H1-H4 family of limit
cycles. System dynamics at H1. The solid purple line
denotes the stable limit cycle. The dotted purple line
denotes the unstable limit cycle. The red diamond
denotes the limit point of cycles bifurcation as we
track the limit cycle originated from the bifurcations
H1 and H4.

For the system of ODES in Equations 1 and 2, H1
was identified at β = 0.29, Z = 0.31, Y = 2.08 (2
d.p) with eigenvalues λ = −0.000001 ± 5.18i. We
compute l1 = 166.31 (2 d.p), so we characterise H1
as a subcritical Hopf bifurcation. H2 was identified at
β = −0.26, Z = −0.09, Y = 0.48 (2 d.p) with eigen-
values λ = ±3.18i. We compute l1 = −21.46 (2 d.p),
so we characterise H2 as a supercritical Hopf bifur-
cation. H3 was identified at β = −0.42, Z = −0.21,
Y = 1.98 (2 d.p) with eigenvalues λ = ±3.68i. We
compute l1 = −193.32 (2 d.p), so we characterise H3
as a supercritical Hopf bifurcation. H4 was identi-
fied at β = 0.77, Z = 0.66, Y = 0.89 (2 d.p) with

eigenvalues λ = ±19.14i. We compute l1 = −269.19
(2 d.p), so we characterise H4 as a supercritical Hopf
bifurcation.

For deeper understanding of the system behaviour,
we shall constrain our analysis to the Z subsystem
while varying the parameter β (Figure 11). This
is because the Z subsystem implicitly depends on
the Y subsystem behaviour. Immediately we note,
though mathematically allowed, analysing this sub-
system with negative β values has no physiological
meaning. The case study authors set β to control
the release of Ca2+ from the InsP3-sensitive stores.
This implies the direction of flow is predetermined:
β must always be positive. We further constrain our
Z subsystem dynamics where β > 0.
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Figure 14: Bifurcation diagram of the Y subsystem
varying β. The solid line in black denotes the sta-
ble equilibrium curve. The dotted black line denotes
the unstable equilibrium curve. The blue dots show
the Hopf bifurcations in the system. This analysis is
conducted for the system of equations 1 and 2 for the
parameter values as given in Figure 2.

We track the limit cycles arising from the Hopf bifur-
cations using numerical continuation. We found two
distinct families of limit cycles originating from the
four Hopf bifurcation points in the Z subsystem. The
maximum and minimum values of these limit cycles
are plotted as a solid purple line. As discussed earlier,
we may disregard the H2-H3 family of limit cycles, as
they lie in the regions where β < 0. For the H1-H4
family of limit cycles, we obtain three limit point of
cycles LPC1, LPC2, LPC3 (Figure 12). We observe
that oscillations appear and disappear in Hopf bifur-
cations as β increases. Figure 13 shows the system
dynamics close to H1. We observe a subcritical bi-
furcation at H1, which leads to a branch of unstable
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limit cycles. These turn around in a saddle-node of
periodic orbits bifurcation to give a branch of stable
limit cycles. We note that this analysis agrees with
the temporal dynamics analysis where we vary β, as
the limit cycles only exist when ≈ 0.3 < β <≈ 0.8
which agrees with [14]. We identify the H1-H4 family
of limit cycles as the drivers behind the Z subsystem
oscillations, i.e. the subsystem where the oscillations
arise from the cytosolic Ca2+ being pumped into an
InsP3-insensitive store. This effectively suggests that
the H1-H4 family of limit cycles drives the oscillations
in the entire system as given in equations 1 and 2.

Although we have discussed that the Z subsystem
analysis completely examines the Y subsystem dy-
namics, for comprehensiveness in our analysis, we
verify our discussion through a brief analysis of the
Y subsystem dynamics. Figure 14 shows the bifurca-
tion diagram of the Y subsystem varying β. Through
a similar argument as observed for the Z subsystem
dynamics, for the H1-H4 family of limit cycles, we ob-
tain three limit point of cycles LPC2, LPC3 (Figure
15). We employ the same technique as before, and
observe the dynamics close to the H1 bifurcation and
conclude that there are unstable limit cycles turning
into stable limit cycles through a saddle-node of pe-
riodic orbits bifurcation (Figure 16).
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Figure 15: Numerical continuation of the Y subsys-
tem varying β focusing on the H1-H4 family of limit
cycles. The solid purple line denotes the maximum
and minimum values of Y on limit cycles. The red
diamond denotes the limit point of cycles bifurcation
as we track the limit cycle originated from the bifur-
cations H1 and H4.
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Figure 16: Numerical continuation of the Y subsys-
tem varying β focusing on the H1-H4 family of limit
cycles. System dynamics at H1. The solid purple line
denotes the stable limit cycle. The dotted purple line
denotes the unstable limit cycle. The red diamond
denotes the limit point of cycles bifurcation as we
track the limit cycle originated from the bifurcations
H1 and H4.

We have comprehensively discussed the bifurcation
diagram in terms of β, by breaking down the case
study model into individual subsystems and apply-
ing numerical continuation effectively.

10



EMATM0007 December 10, 2021

Bibliography
[1] Atri, A., Amundson, J., Clapham, D., and

Sneyd, J. A single-pool model for intracellular
calcium oscillations and waves in the xenopus
laevis oocyte. Biophysical Journal 65, 4 (1993),
1727–1739.

[2] Berridge, M. J. Neuronal calcium signaling.
Neuron 21, 1 (1998), 13–26.

[3] Berridge, M. J. Inositol trisphosphate and
calcium signalling mechanisms. Biochimica et
Biophysica Acta (BBA)-Molecular Cell Research
1793, 6 (2009), 933–940.

[4] Berridge, M. J., Bootman, M. D., and
Lipp, P. Calcium-a life and death signal. Nature
395, 6703 (1998), 645–648.

[5] Berridge, M. J., Cobbold, P., and Cuth-
bertson, K. Spatial and temporal aspects of
cell signalling. Philosophical Transactions of the
Royal Society of London. B, Biological Sciences
320, 1199 (1988), 325–343.

[6] Blyth, M., Renson, L., and Marucci, L.
Tutorial of numerical continuation and bifurca-
tion theory for systems and synthetic biology.
arXiv preprint arXiv:2008.05226 (2020).

[7] Brown, H., Difrancesco, D., and Noble,
S. Cardiac pacemaker oscillation and its mod-
ulation by autonomic transmitters. Journal of
Experimental Biology 81, 1 (1979), 175–204.

[8] Carafoli, E., and Crompton, M. The reg-
ulation of intracellular calcium. Elsevier 10
(1978), 151–216.

[9] Charles, A. C., Merrill, J. E., Dirksen,
E. R., and Sandersont, M. J. Intercellular
signaling in glial cells: calcium waves and oscilla-
tions in response to mechanical stimulation and
glutamate. Neuron 6, 6 (1991), 983–992.

[10] Clapham, D. E. Calcium signaling. Cell 131,
6 (2007), 1047–1058.

[11] Clewley, R. H., Sherwood, W., LaMar,
M., and Guckenheimer, J. Pydstool, a soft-
ware environment for dynamical systems mod-
eling. URL http://pydstool. sourceforge. net
(2007).

[12] De Young, G. W., and Keizer, J. A single-
pool inositol 1, 4, 5-trisphosphate-receptor-
based model for agonist-stimulated oscillations

in ca2+ concentration. Proceedings of the Na-
tional Academy of Sciences 89, 20 (1992), 9895–
9899.

[13] Dolmetsch, R. E., Xu, K., and Lewis, R. S.
Calcium oscillations increase the efficiency and
specificity of gene expression. Nature 392, 6679
(1998), 933–936.

[14] Dupont, G., Berridge, M., and Gold-
beter, A. Signal-induced ca2+ oscillations:
properties of a model based on ca2+-induced
ca2+ release. Cell calcium 12, 2-3 (1991), 73–
85.

[15] Goldbeter, A., Dupont, G., and
Berridge, M. J. Minimal model for signal-
induced ca2+ oscillations and for their frequency
encoding through protein phosphorylation. Pro-
ceedings of the National Academy of Sciences
87, 4 (1990), 1461–1465.

[16] Hartwell, L. H., and Kastan, M. B. Cell
cycle control and cancer. Science 266, 5192
(1994), 1821–1828.

[17] Jacob, R., Merritt, J. E., Hallam, T. J.,
and Rink, T. J. Repetitive spikes in cytoplas-
mic calcium evoked by histamine in human en-
dothelial cells. Nature 335, 6185 (1988), 40–45.

[18] Kruse, K., and Jülicher, F. Oscillations in
cell biology. Current opinion in cell biology 17,
1 (2005), 20–26.

[19] Kuznetsov, Y. Andronov-hopf bifurcation.
Scholarpedia 1, 10 (2006), 1858.

[20] Lavrentovich, M., and Hemkin, S. A math-
ematical model of spontaneous calcium (ii) os-
cillations in astrocytes. Journal of Theoretical
Biology 251, 4 (2008), 553–560.

[21] Li, Y.-X., and Rinzel, J. Equations for insp3
receptor-mediated [ca2+] i oscillations derived
from a detailed kinetic model: a hodgkin-huxley
like formalism. Journal of theoretical Biology
166, 4 (1994), 461–473.

[22] Mikoshiba, K. The insp3 receptor and intra-
cellular ca2+ signaling. Current opinion in neu-
robiology 7, 3 (1997), 339–345.

[23] Paydarfar, D., and Eldridge, F. L. Phase
resetting and dysrhythmic responses of the
respiratory oscillator. American Journal of
Physiology-Regulatory, Integrative and Compar-
ative Physiology 252, 1 (1987), R55–R62.

11



EMATM0007 December 10, 2021

[24] Perez, J. F., and Sanderson, M. J. The fre-
quency of calcium oscillations induced by 5-ht,
ach, and kcl determine the contraction of smooth
muscle cells of intrapulmonary bronchioles. The
Journal of general physiology 125, 6 (2005), 535–
553.

[25] Pfanzagl, B., Zevallos, V. F., Schuppan,
D., Pfragner, R., and Jensen-Jarolim, E.
Histamine causes influx via t-type voltage-gated
calcium channels in an enterochromaffin tumor
cell line: potential therapeutic target in adverse
food reactions. American Journal of Physiology-
Gastrointestinal and Liver Physiology 316, 2
(2019), G291–G303.

[26] Schuster, S., Marhl, M., and Höfer, T.
Modelling of simple and complex calcium oscil-
lations: From single-cell responses to intercellu-
lar signalling. European Journal of Biochemistry
269, 5 (2002), 1333–1355.

[27] Sneyd, J. Models of calcium dynamics. Schol-
arpedia 2, 3 (2007), 1576.

[28] Sneyd, J., Han, J. M., Wang, L., Chen, J.,
Yang, X., Tanimura, A., Sanderson, M. J.,
Kirk, V., and Yule, D. I. On the dynamical
structure of calcium oscillations. Proceedings of
the National Academy of Sciences 114, 7 (2017),
1456–1461.

[29] Somogyi, R., and Stucki, J. Hormone-
induced calcium oscillations in liver cells can be
explained by a simple one pool model. Journal
of biological chemistry 266, 17 (1991), 11068–
11077.

[30] Wang, S., and Thompson, S. H. Local pos-
itive feedback by calcium in the propagation of
intracellular calcium waves. Biophysical journal
69, 5 (1995), 1683–1697.

[31] Yan, Z. Hopf bifurcation in the lorenz-type
chaotic system. Chaos, Solitons & Fractals 31,
5 (2007), 1135–1142.

12


	Introduction
	Biological model
	Related Works
	Temporal Dynamics Analysis
	Phase plane analysis
	Bifurcation analysis
	Bibliography

